Skip to content

code for ICCV 2019 Paper Exploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks

Notifications You must be signed in to change notification settings

vanoracai/Exploiting-Spatial-temporal-Relationships-for-3D-Pose-Estimation-via-Graph-Convolutional-Networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

f83d8d3 · Apr 8, 2020

History

11 Commits
Dec 24, 2019
Dec 24, 2019
Dec 20, 2019
Dec 20, 2019
Dec 20, 2019
Apr 8, 2020
Dec 20, 2019
Dec 24, 2019
Dec 20, 2019

Repository files navigation

Exploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks

This is the code for the paper ICCV 2019 Exploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks in Pytorch.

Dependencies

  • cuda 9.0
  • Python 3.6
  • Pytorch 0.4.1.

Dataset setup

CPN 2D detections for Human3.6 M datasets are provided by VideoPose3D by Pavllo etal., which can be downloaded by:

cd data
wget https://dl.fbaipublicfiles.com/video-pose-3d/data_2d_h36m_cpn_ft_h36m_dbb.npz
wget https://dl.fbaipublicfiles.com/video-pose-3d/data_2d_h36m_detectron_ft_h36m.npz
cd ..

3D labels and ground truth can be downloaded and put in data/ folder 3d gt labels

Download pretrained model

Pretrained models can be found in pretrained models, pls download it and put in the ckpt/ dictory(create it if it does not exist)

Test the Model

To test on Human3.6M on single frame, run:

python main_graph.py --pad 0 --show_protocol2 --post_refine --stgcn_reload 1 --post_refine_reload 1 --previous_dir '/ckpt/1_frame/cpn/' --stgcn_model 'model_st_gcn_36_eva_post_5062.pth' --post_refine_model 'model_post_refine_36_eva_post_5062.pth' 

To test on Human3.6M on 3-frames, run:

python main_graph.py --pad 1 --show_protocol2 --post_refine --stgcn_reload 1 --post_refine_reload 1 --previous_dir '/ckpt/3_frame/cpn/' --stgcn_model 'model_st_gcn_58_eva_post_4903.pth' --post_refine_model 'model_post_refine_58_eva_post_4903.pth' 

Train the Model

To train on Human3.6M with 3-frame, run:

python main_graph.py --pad 1 --pro_train 1 --save_model 1

After training for several epoches, add post_refine part

python main_graph.py --pad 1 --pro_train 1 --post_refine --save_model 1 --learning_rate 1e-5 --sym_penalty 1 --co_diff 1  --stgcn_reload 1  --previous_dir [your model saved path] --stgcn_model [your pretrained model] 

Citation

@inproceedings{cai2019exploiting,
  title={Exploiting spatial-temporal relationships for 3d pose estimation via graph convolutional networks},
  author={Cai, Yujun and Ge, Liuhao and Liu, Jun and Cai, Jianfei and Cham, Tat-Jen and Yuan, Junsong and Thalmann, Nadia Magnenat},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={2272--2281},
  year={2019}
}

Acknowledgements

Some of our implementation code/preprocessed data was adapted from VideoPose3D by Pavllo et al., st-gcn by Yansijie et al., simple-yet-effective baseline by Julia et al.,Non-local neural networks. Thanks for their help!

Licence

MIT

About

code for ICCV 2019 Paper Exploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages