Skip to content

Predictive (AI) Pipeline for the Bioactivity of Antimicrobial Peptides

Notifications You must be signed in to change notification settings

lucaspalmeira/AMPs

Repository files navigation

AMPs

Uso de machine learning para a predição das energias de interação de peptídeos antimicrobianos (WANG, LI, WANG, 2016) frente a Glicoproteína Spike de Sars-Cov-2.

Descritores

Baseado em teoria dos grafos (DANISHUDDIN, KHAN, 2016), descritores moleculares topológicos foram implementados por meio da biblioteca RDKit (https://pypi.org/project/rdkit-pypi/). O descritores são: BalabanJ (BALABAN, 1982), Hall Kier Alpha (HALL, KIER, 1991) e Kappa (HALL, KIER, 1991).

Além destes descritores, foi implementado o descritor Sequence Order Coupling Number (CHOU, 2000) acompanhado das matrizes de distância entre os aminoácidos propostas por Schneider e Wrede (SCHNEIDER, WREDE, 1994) e Grantham (GRANTHAM, 1974).

O número da ordem de sequência de acoplamento é dado pela seguinte equação:

git

Modelos Preditivos

Utilizando da biblioteca Sci-kit learn, foram implementados 5 modelos de regressão. São eles:

  • Random Florest Regressor
  • Support Vector Regression
  • Linear Support Vector Regression
  • Nu Support Vector Regression
  • Linear Regression

Install RDKit

pip install rdkit-pypi

Run

python manipulate_files.py

Referências

BALABAN, Alexandru T. Highly discriminating distance-based topological index. Chemical Physics Letters, v. 89, n. 5, p. 399–404, 1982.

CHOU, K. C. Prediction of Protein Subcellular Locations by Incorporating Quasi-Sequence-Order Effect. Biochemical and Biophysical Research Communications, v. 278, n. 2, p. 477–483, 19 nov. 2000.

DANISHUDDIN; KHAN, A. U. Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discovery Today, v. 21, n. 8, p. 1291–1302, 2016.

GRANTHAM, R. Amino Acid Difference Formula to Help Explain Protein Evolution. Science, v. 185, n. 4154, p. 862–864, 6 set. 1974.

HALL, L. H.; KIER, L. B. The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Modeling. p. 367–422, 5 jan. 2007.

SCHNEIDER, G.; WREDE, P. The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophysical Journal, v. 66, n. 2 Pt 1, p. 335, 1994.

WANG, G.; LI, X.; WANG, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, v. 44, n. D1, p. D1087–D1093, 4 jan. 2016.

About

Predictive (AI) Pipeline for the Bioactivity of Antimicrobial Peptides

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages