Install via pip
pip install target_benchmark
Install from source
git clone https://github.com/target-benchmark/target.git
cd target
pip install -e .
If you want to use the default generators for generating downstream task answers, you need to add your OpenAI API key as one of the environment variables:
export OPENAI_API_KEY=<your openai api key>
- run evaluations on TARGET's baseline retrievers
- implement your own custom retrievers and generators
- create your own custom task
Let's see how we can run evaluation on a baseline retriever. We'll use LlamaIndex as an example:
from target_benchmark.evaluators import TARGET, get_task_names
# you can run `get_task_names()` to get all available tasks
from target_benchmark.retrievers import LlamaIndexRetriever
# specify a task and a dataset to run evaluations on.
target_fetaqa = TARGET(("Table Retrieval Task", "fetaqa"))
# create a new retriever object
llamaindex_retriever = LlamaIndexRetriever()
# run the evaluation!
performance = target_fetaqa.run(retriever=llamaindex_retriever, split="test", top_k=10)
# if you'd like, you can also persist the retrieval and downstream generation results
performance = target_fetaqa.run(retriever=llamaindex_retriever, split="test", top_k=10, retrieval_results_file="./retrieval.jsonl", downstream_results_file="./downstream.jsonl")
TARGET offers a simple interface for creating custom retrievers. You can either inherit from the AbsCustomEmbeddingRetriever
class or the AbsStandardEmbeddingRetriever
class.
Inherit from this class if your retriever uses a custom format for embedding tables (e.g., specific directory structures or file types). The TARGET evaluator assumes that your retriever will manage the persistence of embeddings during evaluation.
When to Use This Class
- Custom Embedding Formats: Your retriever requires specific storage formats for embeddings.
- Self-Managed Persistence: You handle the storage and retrieval of embeddings yourself.
Implementing the Required Methods
To use this class, implement the following two methods:
-
embed_corpus
- Parameters:
dataset_name
: Identifier for the dataset.corpus
: The dataset to embed, provided as an iterable of dictionaries.
-
retrieve
- Parameters:
query
: The user's query string.dataset_name
: Identifier for the dataset.top_k
: Number of top results to return.
- Returns: A list of tuples, where each tuple contains
(database_id, table_id)
of a retrieved table.
- Parameters:
from target_benchmark.retrievers import AbsCustomEmbeddingRetriever
class YourRetriever(AbsCustomEmbeddingRetriever):
# you can specify a `expected_corpus_format`
# (ie nested array, dictionary, dataframe, etc.),
# the corpus tables will be converted to this format
# before passed into the `embed_corpus` function.
def __init__(self, expected_corpus_format: str = "nested array", **kwargs):
super().__init__(expected_corpus_format=expected_corpus_format)
# returns a list of tuples, each being (database_id, table_id) of the retrieved table
def retrieve(self, query: str, dataset_name: str, top_k: int) -> List[Tuple]:
pass
# returns nothing since the embedding persistence is dealt with within this function.
def embed_corpus(self, dataset_name: str, corpus: Iterable[Dict]) -> None:
pass
Inherit from this class if your retriever returns a vector embedding for each table and query. It automatically handles vector data storage using an in-memory Qdrant vector database, so data is not persisted across calls to TARGET.run
. (support for persistence across evaluation runs will be included in the future)
Why Inherit from This Class?
Consider inheriting from this class instead of AbsCustomEmbeddingRetriever
if:
- Simple Embedding Output: Your retriever outputs embeddings as vectors (lists of floats).
- No Special Storage Needs: Your retrieval system doesn't require specific persistence formats or folder structures.
How to Use This Class
To inherit from this class, you need to implement two methods:
-
embed_query
: Returns an embedding vector for a given query.- Parameters:
query
: The user's query string.dataset_name
: Identifier for the dataset.
- Returns: embedding of query in a numpy array
- Parameters:
-
embed_corpus
: Returns embedding vectors for each item in the corpus (e.g., tables or documents).- Parameters:
dataset_name
: Identifier for the dataset.corpus_entry
: An entry in the corpus dataset.- Returns: embedding of corpus entry in a numpy array
from target_benchmark.retrievers import AbsStandardEmbeddingRetriever
class YourRetriever(AbsStandardEmbeddingRetriever):
def __init__(self, expected_corpus_format: str = "nested array", **kwargs):
super().__init__(expected_corpus_format=expected_corpus_format)
#return the embeddings for the query as a numpy array
def embed_query(self, query: str, dataset_name: str,) -> np.ndarray:
pass
# returns embedding of the passed in table as a numpy array
def embed_corpus(self, dataset_name: str, corpus_entry: Dict) -> np.ndarray:
pass
TARGET provides standardized formatting for the corpus datasets. More specifically, each TARGET corpus dataset includes the following columns:
- database_id (str): database that the table belongs to.
- table_id (str): table's identifier.
- table: the actual table contents. default format is nested array, but you can specify the expected format to be
dictionary
ordataframe
in your retriever's constructor. Tables are automatically converted to the expected format before passed into theembed_corpus
function. - context (dict): any metadata associated with the table. for example, text-2-sql datasets' context often include primary and foreign key information.
Both retriever classes' embed_corpus
function takes in corpus information.
AbsStandardEmbeddingRetriever
:corpus_entry
is a single entry within the corpus dataset. for example, it may look like this:
{
"database_id": "0",
"table_id": "totto_source/train_json/example-10461.json",
"table": <table contents in the retriever's expected format>,
"context": {"table_page_title": "1982 Illinois gubernatorial election",
"table_section_title": "Results"},
}
AbsCustomEmbeddingRetriever
:corpus
is an iterable of dictionaries. Each dictionary contains a batch of corpus entries. For example:
{
"database_id": ["0", "1"],
"table_id": ["Serbia_at_the_European_Athletics_Championships_2", "List_of_University_of_Texas_at_Austin_alumni_20"],
"table": [<table content>, <table content>],
"context": [{"section_title": "Indoor -- List of Medalists"}, {"section_title": "Literature , writing , and translation"}],
}
The length of the lists will correspond to the batch size specified when calling TARGET.run
.
Creating your customer generators for downstream tasks is also straightforward. You only need to implement one function,
generate
- Parameters:
table_str
: String of the retrieved table contents.query
: The natural language query.
from target_benchmark.generators import AbsGenerator
class YourCustomGenerator(AbsGenerator):
# returns the answer to the query
def generate(self, table_str: str, query: str) -> str:
pass
To use your generators, first create a task object, and pass the generator into the task object:
from target_benchmark.evaluators import TARGET
from target_benchmark.tasks import QuestionAnsweringTask
qa_task = QuestionAnsweringTask(task_generator=YourGenerator())
target_evaluator = TARGET(downstream_tasks=qa_task)
Note that here instead of specifying the task by its name, we are passing in a task object instead with the generator set to our created custom generator.