Skip to content

Code for "DrapeNet: Garment Generation and Self-Supervised Draping", CVPR2023

License

Notifications You must be signed in to change notification settings

liren2515/DrapeNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

5fdc6a9 · Sep 6, 2023

History

23 Commits
Mar 25, 2023
Mar 25, 2023
Mar 25, 2023
Aug 6, 2023
Mar 25, 2023
Mar 25, 2023
Mar 25, 2023
Mar 25, 2023
Mar 25, 2023
Mar 25, 2023
Mar 25, 2023
Mar 25, 2023
Mar 25, 2023
Jul 13, 2023
Mar 20, 2023
Sep 6, 2023
Jul 13, 2023
Jul 13, 2023
Mar 25, 2023
Mar 25, 2023

Repository files navigation

DrapeNet: Garment Generation and Self-Supervised Draping

This is the repo for DrapeNet: Garment Generation and Self-Supervised Draping.

Environment:

  • Ubuntu 20.04
  • python 3.8.6
  • PyTorch 1.13.1 w/ CUDA 11.7

Setup:

Option I: Using virtualenv

python3 -m venv .venv
source .venv/bin/activate
pip install -U pip setuptools
pip install numpy open3d einops hesiod fvcore tensorboard trimesh cython networkx

Install torch and pytorch3d:

pip install https://download.pytorch.org/whl/cu113/torch-1.12.0%2Bcu113-cp38-cp38-linux_x86_64.whl
pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu113_pyt1120/download.html

Build and install meshudf:

cd meshudf
source setup.sh

Download and extract the SMPL model from http://smplify.is.tue.mpg.de/ and place basicModel_f_lbs_10_207_0_v1.0.0.pkl in the folder of ./smpl_pytorch manually or:

bash download_smpl.sh

Option II: Using docker

cd docker/ && docker build -t drapenet . && cd ..

Run the container by:

docker run -it --rm --gpus all --shm-size=8gb --name drapenet drapenet

Once inside the docker container, download and extract the SMPL model from http://smplify.is.tue.mpg.de/ and place basicModel_f_lbs_10_207_0_v1.0.0.pkl in the folder of ./smpl_pytorch manually or:

bash download_smpl.sh

We would like to thank Kristijan Bartol for the contribution of this installation setup.

Encoder-Decoder:

cd encdec
python3 preprocess_udf.py </path/to/meshes> </out/path>
python3 train_encdec.py  # add </path/to/run/cfg/file> to restore training
python3 export_codes.py </path/to/run/cfg/file>
python3 export_meshes.py </path/to/run/cfg/file>

The mesh data for the training of Encoder-Decoder can be downloaded from here. Note that we preprocess the orignal meshes of CLOTH3D to drape them on the female body with neutral shape.

Editing:

cd editing
python3 create_dset.py
python3 compute_weights.py
python3 edit.py

Draping:

cd draping
python3 drape.py

Citation

If you find our work useful, please cite it as:

@inproceedings{de2023drapenet,
  author = {De Luigi, Luca and Li, Ren and Guillard, Benoit and Salzmann, Mathieu and Fua, Pascal},
  title = {{DrapeNet: Garment Generation and Self-Supervised Draping}},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year = {2023}
}

Our work is built upon MeshUDF. If you find it helpful, please cite it properly as well.

About

Code for "DrapeNet: Garment Generation and Self-Supervised Draping", CVPR2023

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages