Skip to content

kristianceder/DRL-Traj-Planner

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bird's-Eye-View Based Trajectory Planning of Multiple Mobil Robots Using DRL and MPC

Trajectory Planning of Multiple Robots using Vision-Based Continuous Deep Reinforcement Learning and Model Predictive Control Example

The main branch of this repository is the single robot implementation of our paper. The multiple robot implementation is in a separate branch in the repository.

The paper can be found here: Paper

Quick Start

OpEn

The NMPC formulation is solved using open source implementation of PANOC, namely OpEn. Follow the installation instructions before proceeding.

Install dependencies (after installing OpEn)

pip install -r requirements.txt

or

conda env create -f environment.yaml

NOTE If you cannot create the virtual environment via conda, please create your own virtual environment (e.g. conda create -n rlboost python=3.9), and pip install. Make sure your RUST is up-to-date and Pytorch is compatible with Cuda.

Generate MPC solver

Go to "test_block_mpc.py", change INIT_BUILD to true and run

python test_block_mpc.py

After this, a new directory mpc_build will appear and contain the solver. Then, you are good to go :)

To train the DDPG

Go to "src/continous_training_local.py", change load_checkpoint to False and run.

Use Case

Run src/main_continous.py for the simulation in Python. Several cases are available by changing scene_option in src/main_continous.py.

Extended result table

Scene Obstacle Type Method Comp. time (mean) Comp. time (max) Comp. time (std) Deviation (mean) Deviation (max) Speed Angular speed Finish time step Success rate (%)
Scene 1 (a) Rectangular obstacle MPC 29.03 94.11 24.51 0.54 1.94 0.04 0.03 76 100
Scene 1 (a) Rectangular obstacle DDPG 0.77 10.41 7.78 1.02 1.98 0.08 0.61 73 100
Scene 1 (a) Rectangular obstacle HYB-DQN-V 23.07 240.46 45.22 0.91 2.11 0.03 0.1 81 100
Scene 1 (a) Rectangular obstacle HYB-DDPG 11.94 49.74 8.54 0.9 2.23 0.02 0.06 76 100
Scene 1 (b) Two obstacles HYB-DQN-V 20.18 109.7 18.39 1.0 2.68 0.04 0.06 98 100
Scene 1 (b) Two obstacles HYB-DDPG 17.38 86.21 14.31 0.96 2.62 0.03 0.05 97 100
Scene 1 (c) U-shape obstacle DDPG 0.79 10.65 7.85 0.98 1.91 0.08 0.58 74 100
Scene 1 (c) U-shape obstacle HYB-DQN-V 93.49 1019.9 254.09 0.84 2.93 0.09 0.16 118 40
Scene 1 (c) U-shape obstacle HYB-DDPG 15.74 99.04 17.95 0.87 2.18 0.02 0.07 75 100
Scene 1 (d) Dynamic obstacle (face-to-face) MPC 16.07 129.18 25.02 0.44 1.69 0.03 0.04 69 100
Scene 1 (d) Dynamic obstacle (face-to-face) DDPG 0.82 10.96 7.95 0.74 1.94 0.08 0.48 77 98
Scene 1 (d) Dynamic obstacle (face-to-face) HYB-DDPG 11.13 69.7 13.01 0.9 2.85 0.02 0.05 79 100
Scene 2 (e) Sharp turn with an obstacle DQN-V 0.69 10.74 5.49 0.87 1.44 0.19 0.7 150 78
Scene 2 (e) Sharp turn with an obstacle DDPG 0.74 10.61 5.35 0.53 1.37 0.09 0.56 158 96
Scene 2 (e) Sharp turn with an obstacle HYB-DQN-V 11.8 135.32 15.95 0.49 1.8 0.02 0.04 149 100
Scene 2 (e) Sharp turn with an obstacle HYB-DDPG 14.82 98.26 15.47 0.43 1.63 0.01 0.03 151 100
Scene 2 (f) U-turn with an obstacle DQN-V 0.75 10.48 7.80 0.42 0.87 0.17 0.67 149 40
Scene 2 (f) U-turn with an obstacle DDPG 0.73 10.48 5.00 0.63 1.05 0.13 0.51 169 74
Scene 2 (f) U-turn with an obstacle HYB-DQN-V 14.19 99.66 15.10 0.43 1.67 0.02 0.03 148 100
Scene 2 (f) U-turn with an obstacle HYB-DDPG 11.91 75.17 11.80 0.4 1.42 0.02 0.02 147 100

Evaluation videos

Videos of the evaluations are available on youtube

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published