The models were trained using CUDA 11.1, Python 3.7.4 (conda environment), PyTorch 1.8.0 and Ubuntu 22.04.
Create a conda environment with the PyTorch library:
conda env create --file environment.yml
conda activate baseboostdepth
pip install git+'https://github.com/otaheri/chamfer_distance'
We use the KITTI dataset and follow the downloading/preprocessing instructions set out by Monodepth2. Download from scripts;
wget -i scripts/kitti_archives_to_download.txt -P data/KITTI_RAW/
Then unzip the downloaded files;
cd data/KITTI_RAW
unzip "*.zip"
cd ..
cd ..
Then convert all images to jpg;
find data/KITTI_RAW/ -name '*.png' | parallel 'convert -quality 92 -sampling-factor 2x2,1x1,1x1 {.}.png {.}.jpg && rm {}'
KITTI: (Abs_Rel, RMSE, a1)
SYNS: (Edge-Acc, Edge-Comp, Point cloud F-Score, Point cloud IoU)
Model Name | Abs_Rel | RMSE | a1 | Edge-Acc | Edge-Comp | F-Score | IoU | Model resolution | Model |
---|---|---|---|---|---|---|---|---|---|
BaseBoostDepth | 0.106 | 4.584 | 0.883 | 2.453 | 3.810 | 0.275 | 0.174 | 640 x 192 | MD2 |
BaseBoostDepth (pre) | 0.104 | 4.544 | 0.888 | 2.432 | 4.763 | 0.268 | 0.168 | 640 x 192 | MD2 |
BaseBoostDepth (pre MonoViT) | 0.096 | 4.201 | 0.906 | 2.409 | 5.314 | 0.300 | 0.191 | 640 x 192 | MonoViT |
BaseBoostDepth (pre SQLdepth) | 0.084 | 3.980 | 0.920 | 2.505 | 13.164 | 0.246 | 0.151 | 640 x 192 | SQLdepth |
python export_gt_depth.py --data_path data/KITTI_RAW --split eigen_zhou
bash run.sh
We must prepare ground truth files for testing/validation and training.
python export_gt_depth.py --data_path data/KITTI_RAW --split eigen
python export_gt_depth.py --data_path data/KITTI_RAW --split eigen_benchmark
We provide the evaluation for the KITTI dataset. If a ViT model is used as the weights, please use --ViT when evaluating below.
python evaluate_depth.py --load_weights_folder {weights_directory} --eval_mono --kt_path data/KITTI_RAW --eval_split eigen
python evaluate_depth.py --load_weights_folder {weights_directoryMonoViT} --eval_mono --kt_path data/KITTI_RAW --eval_split eigen --ViT
python evaluate_depth.py --load_weights_folder {weights_directorySQL} --eval_mono --kt_path data/KITTI_RAW --eval_split eigen --SQL
python evaluate_depth.py --load_weights_folder {weights_directory} --eval_mono --kt_path data/KITTI_RAW --eval_split eigen_benchmark
python evaluate_depth.py --load_weights_folder {weights_directoryMonoViT} --eval_mono --kt_path data/KITTI_RAW --eval_split eigen_benchmark --ViT
python evaluate_depth.py --load_weights_folder {weights_directorySQL} --eval_mono --kt_path data/KITTI_RAW --eval_split eigen_benchmark --SQL
Due August
- Monodepth2 (ICCV 2019)
- MonoViT
- SQLdepth