Skip to content

A collection of portable, reusable and cross-platform automation recipes (CM scripts) to make it easier to build and benchmark AI systems across diverse models, data sets, software and hardware

License

Notifications You must be signed in to change notification settings

ctuning/cm4mlops

 
 

Repository files navigation

Legacy CM4MLOps repository with DevOps, MLOps and MLPerf automations

License Powered by CM.

This repository is powered by the Collective Mind workflow automation framework.

The latest sources are available in this repository.

Two key automations developed using CM are Script and Cache, which streamline machine learning (ML) workflows, including managing Docker runs. Both Script and Cache automations are part of the cm4mlops repository.

The CM scripts, also housed in this repository, consist of hundreds of modular Python-wrapped scripts accompanied by yaml metadata, enabling the creation of robust and flexible ML workflows.

License

Apache 2.0

Copyright

© 2022-2025 MLCommons. All Rights Reserved.

Grigori Fursin, the cTuning foundation and OctoML donated the CK and CM projects to MLCommons to benefit everyone and encourage collaborative development.

Maintainer(s)

  • MLCommons

Author

Grigori Fursin.

We thank all contributors for their invaluable feedback and support!

Concepts

Check our ACM REP'23 keynote and the white paper.

Test image classification and MLPerf R-GAT inference benchmark via CMX GitHub repo

pip install cmind
cmx pull repo mlcommons@ck --dir=cm4mlops/cm4mlops
cmx run script "python app image-classification onnx" --quiet
cmx run script "run-mlperf inference _performance-only _short" --model=resnet50 --precision=float32 --backend=onnxruntime --scenario=Offline --device=cpu --env.CM_SUDO_USER=no --quiet
cmx run script --tags=run,mlperf,inference,generate-run-cmds,_submission,_short --submitter="MLCommons" --adr.inference-src.tags=_branch.dev --pull_changes=yes --pull_inference_changes=yes  --submitter="MLCommons" --hw_name=ubuntu-latest_x86 --model=rgat --implementation=python --backend=pytorch --device=cpu --scenario=Offline --test_query_count=500 --adr.compiler.tags=gcc --category=datacenter --quiet  --v --target_qps=1

Parent project

Visit the parent Collective Knowledge project for further details.

Citing this project

If you found the CM automations helpful, kindly reference this article: [ ArXiv ]

About

A collection of portable, reusable and cross-platform automation recipes (CM scripts) to make it easier to build and benchmark AI systems across diverse models, data sets, software and hardware

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 76.5%
  • Shell 11.5%
  • C++ 6.6%
  • C 2.7%
  • Batchfile 1.9%
  • Dockerfile 0.5%
  • Other 0.3%