Skip to content

bigai-nlco/VideoTGB

Folders and files

NameName
Last commit message
Last commit date

Latest commit

e4141e2 Β· Mar 2, 2025

History

18 Commits
Mar 2, 2025
Feb 27, 2024
Feb 26, 2024
Feb 26, 2024
Dec 26, 2024
Feb 26, 2024
Mar 2, 2025
Feb 25, 2024
Dec 18, 2024
Mar 2, 2025

Repository files navigation

Updates

  • (2024.09.20) VideoTGB is accepted at EMNLP 2024! πŸ”₯πŸ”₯
  • (2024.02.27) Paper Release, check it on Arxiv.
  • (2024.02.26) Initial Release (Β΄β–½`Κƒβ™‘Ζͺ)

Overview

This is a chat agent based on our work Efficient Temporal Extrapolation of Multimodal Large Language Models with Temporal Grounding Bridge for Long Video Understanding. This work is finetuned on video-instruction datasets and image-instruction datasets.

We have meticulously chosen two distinct architectural paradigms for our study: the encoder-decoder architecture, exemplified by BLIP2-Flan-T5-xl (original version), and the decoder-only architecture, represented by InstructBLIP-Vicuna-7B (original version). For further exploration, we also provide the code to tune the LLM with LoRA.

Installation

# clone project
git clone https://github.com/bigai-nlco/VideoTGB
cd VideoTGB

# create conda environment
conda create -n VideoTGB
conda activate VideoTGB

# install requirements
pip install -r requirements.txt

Data Preparation

You can download all the instruction data and evaluation data from Video-LLaVA/DATA

inputs/ivinstruct
β”œβ”€β”€ llava_image_tune
└── videochatgpt_tune

How to run

Our training framework offers tailored scripts to meet the diverse needs of researchers.

Train model

# run on local
python src/train.py experiment=LSTP_SF_blip2flant5xl_videoinstruct # blip2-flan-t5-xl + video-instruct
python src/train.py experiment=LSTP_SF_instructblipvicuna7b_videoinstruct # instructblip-vicuna-7b + video-instruct

# run on cluster
sbatch scripts/videoinstruct_train.slurm # blip2-flan-t5-xl + video-instruct
sbatch scripts/videoinstruct_vicuna_train.slurm # instructblip-vicuna-7b + video-instruct

For those with limited GPU resources, we also provide the pipeline to shorten the training procedure

# step 1: generate the pseudo labels from the base-model, and extract the optical flow in advance

# step 2: train the temporal sampler
python src/train.py experiment=LSTP_TG_blip2flant5xl_videoinstruct

# step 3: train VideoTGB with fixed temporal sampler
python src/train.py experiment=LSTP_blip2flant5xl_ivinstruct # blip2-flan-t5-xl + video-instruct + image-instruct
python src/train.py experiment=LSTP_instructblipvicuna7b_ivinstruct # instructblip-vicuna-7b + video-instruct + image-instruct
python src/train.py experiment=LSTP_blip2flant5xl_ivtinstruct # blip2-flan-t5-xl (LoRA) + video-instruct + image-instruct + text-instruct
python src/train.py experiment=LSTP_instructblipvicuna7b_ivtinstruct # instructblip-vicuna-7b (LoRA) + video-instruct + image-instruct + text-instruct

Evaluate model

# run inference for VideoTGB-Vicuna-7B
bash eval/scripts/run_qa_msvd_vicuna.sh
bash eval/scripts/run_qa_msrvtt_vicuna.sh
bash eval/scripts/run_qa_activitynet_vicuna.sh

# run inference for VideoTGB-Flan-T5-xl
bash eval/scripts/run_qa_msvd.sh
bash eval/scripts/run_qa_msrvtt.sh
bash eval/scripts/run_qa_activitynet.sh

# run evaluation
bash eval/scripts/eval_qa_msvd.sh
bash eval/scripts/eval_qa_msrvtt.sh
bash eval/scripts/eval_qa_activitynet.sh

Configures

data:
  - text_dir
  - video_dir
  - processor_name
  - sampler_processor_name
  - nframe # final sampled frames
  - target_size # image size
  - batch_size
model:
  - model_name_or_path
  - sampler_name_or_path
  - of_extractor_name_or_path
  - optimizer
  - scheduler
  - generate_configs
path:
  - data_dir
  - video_dir
  - text_dir
  - output_dir
trainer: 
  - strategy
  - accelerator
  - devices
  - num_nodes
  - precision

Evaluation Results

Metrics: Accuracy/Score

Methods LLM size MSVD-QA MSRVTT-QA ActivityNet-QA
FrozenBiLM 1B 32.2/- 16.8/- 24.7/-
VideoChat 7B 56.4/2.8 45.0/2.5 -/2.2
LLaMA-Adapter 7B 54.9/3.1 43.8/2.7 34.2/2.7
Video-LLaMA 7B 51.6/2.5 29.6/1.8 12.4/1.1
Video-ChatGPT 7B 64.9/3.3 49.3/2.8 35.2/2.7
Video-LLaVA 7B 70.7/3.9 59.2/3.5 45.3/3.3
VideoTGB-7B 7B 71.3/3.9 57.3/3.3 43.9/3.3

Demo

We provide the chat demo supported by Gradio. We also provide some checkpoints, you can download it an put it to ckpts/VideoTGB-Chat/.

Model Zoo

Model Base Model Training Data Strategy for LLM Download Link
LSTP-7B InstructBlip-Vicuna-7B Video-ChatGPT, LLaVA fixed Huggingface
LSTP-FlanT5xl FlanT5-xl Video-ChatGPT, LLaVA fixed Huggingface
python -m demo.demo

Acknowledgement

Citation

If you find our work helpful, please consider ⭐️ and cite our work:

@article{wang2024videotgb,
    title={Efficient Temporal Extrapolation of Multimodal Large Language Models with Temporal Grounding Bridge},
    author={Wang, Yuxuan and Wang, Yueqian and Wu, Pengfei and Liang, Jianxin and Zhao, Dongyan and Liu, Yang and Zheng, Zilong},
    year={2024},
    journal = {arXiv preprint arXiv:2402.16050}
}