_ _ _ ____ _ _
___| |_ __ _| |_(_) ___|| |_ _ __(_)_ __ __ _ ___
/ __| __/ _` | __| \___ \| __| '__| | '_ \ / _` / __|
\__ \ || (_| | |_| |___) | |_| | | | | | | (_| \__ \
|___/\__\__,_|\__|_|____/ \__|_| |_|_| |_|\__, |___/
|___/
YARA Rule Strings Statistics Calculator
Shelly Raban (Sh3llyR), February 2021, Version 0.1
Table of Contents
statiStrings is a strings statistics calculator for YARA rules.
The goal is to aid malware research by:
- Finding common and unique strings within malware samples
- Finding common strings within clean files
- Saving time by finding the common characteristics of malware samples automatically
This tool helps writing better, more precise YARA rules for malware detection and malware hunting, based on custom databases of malicious and clean files.
For a given YARA rule and a directory of files, this tool returns the prevalence of each string from the rule in the matched files from the directory.
To use this tool, you must have Python installed.
Install yara-python
pip install yara
Clone the repo
git clone https://github.com/Sh3llyR/statiStrings.git
usage: statiStrings.py [-h] [-y YARA_RULE] [-d TEST_DIR] [-t OUTPUT_TYPE]
YARA Rule Strings Statistics Generator and Malware Research Helper
optional arguments:
-h, --help show this help message and exit
-y YARA_RULE Path to the YARA Rule
-d TEST_DIR Path to the Directory of Files to be Scanned
-t OUTPUT_TYPE Output Type: s (sum - number of files in which each string
from the YARA rule ocuured) / p (percentage - percent of
files in which each string from the YARA rule ocuured).
Default is s
Research of common strings in malicious batch scripts: First, I wrote a YARA rule with many commands that were found in malicious scripts. The condition was "any of them" - very generic. Then, I ran this tool with the rule I wrote against a malicious scripts directory (shown in the following example). Finally, I ran it against a directory with clean scripts. After Going through the results of both clean and malicious scripts, I was able to:
- Group the strings of the YARA rule to suspicious ($s_...), for example tskill, and noisy ($n_...), for example echo.
- Create a condition for my rule that catches the malicious samples but not the clean samples, minimizing false positives.
- python statiStrings.py -y .\batch_commands.yar -d .\batch_samples -t s
- Results:
{'$s_ren': 1, '$n_set': 8, '$s_mem': 1, '$s_reg_add': 8, '$s_taskkill': 4, '$n_exit': 9, '$s_maybe_block_sites_hosts_file': 1, '$s_move': 2, '$s_attrib': 6, '$n_copy': 6, '$n_start': 10, '$n_type': 7, '$n_echo': 26, '$n_reg': 11, '$s_aes': 1, '$s_cscript': 1, '$s_change_mouse_settings': 1, '$n_net': 3, '$n_find': 6, '$s_infinite_loop': 2, '$s_shutdown': 9, '$n_del': 6, '$n_goto': 12, '$s_generic_bat_maybe_copy_itself': 5, '$n_ipconfig': 2, '$n_maybe_time_change': 5, '$n_system': 2, '$s_tskill': 3, '$s_cpu_damage': 1, '$s_erase': 3, '$s_make_random_folders': 1, '$s_sleep': 4, '$n_bat_maybe_copy_itself': 9} Number of files scanned: 157
- python statiStrings.py -y .\batch_commands.yar -d .\batch_samples -t p
- Results:
{'$s_maybe_block_sites_hosts_file': '0.64%', '$s_sleep': '2.55%', '$s_shutdown': '5.73%', '$s_attrib': '3.82%', '$s_change_mouse_settings': '0.64%', '$n_maybe_time_change': '3.18%', '$s_erase': '1.91%', '$s_move': '1.27%', '$n_net': '1.91%', '$s_aes': '0.64%', '$n_reg': '7.01%', '$n_system': '1.27%', '$n_set': '5.1%', '$s_cscript': '0.64%', '$n_find': '3.82%', '$s_generic_bat_maybe_copy_itself': '3.18%', '$s_cpu_damage': '0.64%', '$n_goto': '7.64%', '$s_tskill': '1.91%', '$s_ren': '0.64%', '$s_mem': '0.64%', '$n_type': '4.46%', '$s_taskkill': '2.55%', '$n_exit': '5.73%', '$n_echo': '16.56%', '$s_infinite_loop': '1.27%', '$n_start': '6.37%', '$s_make_random_folders': '0.64%', '$n_bat_maybe_copy_itself': '5.73%', '$n_ipconfig': '1.27%', '$s_reg_add': '5.1%', '$n_del': '3.82%', '$n_copy': '3.82%'} Number of files scanned: 157
Project Link: https://github.com/Sh3llyR/statiStrings