Official codes for our paper submitted to IEEE TIFS: Refining Distributed Noisy Clients: An End-to-end Dual Optimization Framework. This paper is now preprinted on Techrxiv via this link.
Please check below requirements and install packages from requirements.txt
.
$ pip install --upgrade pip
$ pip install -r requirements.txt
The following commands are examples representing symmetric 0.0-0.4
, pairflip 0.0-0.4
and mixed 0.0-0.4
label noise settings.
# symmetric 0.0-0.4 dirichlet 1.0
python main_fed_LNL.py \
--dataset cifar10 \
--model resnet18 \
--epochs 120 \
--noise_type_lst symmetric \
--noise_group_num 100 \
--group_noise_rate 0.0 0.4 \
--partition dirichlet \
--dd_alpha 0.5 \
--method dualoptim | tee symmetric04_dir05.txt
# pairflip 0.0-0.4 dirichlet 1.0
python main_fed_LNL.py \
--dataset cifar10 \
--model resnet18 \
--epochs 120 \
--noise_type_lst pairflip \
--noise_group_num 100 \
--group_noise_rate 0.0 0.4 \
--partition dirichlet \
--dd_alpha 0.5 \
--method dualoptim | tee pairflip04_dir05.txt
# mixed 0.0-0.4
python main_fed_LNL.py \
--dataset cifar10 \
--model resnet18 \
--epochs 120 \
--noise_type_lst symmetric pairflip\
--noise_group_num 50 50 \
--group_noise_rate 0.0 0.4 0.0 0.4 \
--partition dirichlet \
--dd_alpha 1.0 \
--method dualoptim | tee mixed04_cifar10_dir1.txt
Parameter | Description |
---|---|
noise_type_lst |
Noisy type list. |
noisy_group_num |
Number of clients corresponding to noisy type. |
group_noise_rate |
The noise rate corresponding to the noisy group. It increases linearly from 0.0 to noise rate for each group. |
Please check run.sh
for commands for various data and noisy label scenarios.
If you find this work helpful, please consider crediting our work:
@article{DualOptim,
title={Refining Distributed Noisy Clients: An End-to-end Dual Optimization Framework},
url={http://dx.doi.org/10.36227/techrxiv.173707406.66001019/v1},
DOI={10.36227/techrxiv.173707406.66001019/v1},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Jiang, Xuefeng and Li, Peng and Sun, Sheng and Li, Jia and Wu, Lvhua and Wang, Yuwei and Lu, Xiuhua and Ma, Xu and Liu, Min},
year={2025},
month=jan
}