-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsparse_cnn.py
119 lines (103 loc) · 4.99 KB
/
sparse_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import tensorflow as tf
import numpy as np
def maxpool(x, kern, stride):
return tf.nn.max_pool(tf.pad(x, [[0, 0], [kern//2, kern//2],
[kern//2, kern//2], [0, 0]]),
[ 1, kern, kern, 1 ], [ 1, stride, stride, 1], 'VALID')
def relu(x, leakness=0.0, name='relu'):
if leakness > 0.0:
return tf.maximum(x, x*leakness, name=name)
else:
return tf.nn.relu(x, name=name)
def sparse_conv(x, m, kern, out_filters, stride, name='sp_conv'):
in_filters = x.get_shape().as_list()[-1]
with tf.variable_scope(name) as scope:
sigsq = 2.0/(kern*kern*out_filters)
kernel = tf.get_variable('kernel',
[kern, kern, in_filters, out_filters],
tf.float32,
initializer = tf.random_normal_initializer(stddev= np.sqrt(sigsq)))
bias = tf.get_variable('bias',
[1, 1, 1, out_filters],
tf.float32,
initializer = tf.zeros_initializer())
sum_kernel = tf.ones(shape=[kern, kern, 1, 1])
norm = tf.nn.conv2d(tf.pad(m, [[0, 0], [kern//2, kern//2],
[kern//2, kern//2], [0, 0]]),
sum_kernel, [ 1, stride, stride, 1], 'VALID')
x = tf.nn.conv2d(tf.pad(x * m, [[0, 0], [kern//2, kern//2],
[kern//2, kern//2], [0, 0]]),
kernel, [ 1, stride, stride, 1], 'VALID') / (norm + 1e-8)
x = x + bias
m = maxpool(m, kern, stride)
return x, m
def conv(x, kern_sz, out_filters, stride = 1, name='conv', use_bias = False):
in_filters = x.get_shape().as_list()[-1]
sigsq = 2.0/(kern_sz*kern_sz*out_filters)
with tf.variable_scope(name):
kernel = tf.get_variable('kernel', [kern_sz, kern_sz, in_filters, out_filters],
tf.float32, initializer =
tf.random_normal_initializer(stddev = np.sqrt(sigsq)))
if use_bias:
bias = tf.get_variable('bias',
[1, 1, 1, out_filters],
dtype = tf.float32,
initializer = tf.zeros_initializer())
else:
bias = None
if use_bias:
out = tf.nn.conv2d(x, kernel, [ 1, stride, stride, 1 ], 'SAME') + bias
else:
out = tf.nn.conv2d(x, kernel, [ 1, stride, stride, 1 ], 'SAME')
return out
def make_sparse_cnn(m1, d1, m2, d2):
x, m = sparse_conv(d1, m1, 11, 16, 1, name = 'sp_conv1')
x = relu(x)
x, m = sparse_conv(x, m, 7, 16, 1, name = 'sp_conv2')
x = relu(x)
x, m = sparse_conv(x, m, 5, 16, 1, name = 'sp_conv3')
x = relu(x)
x, m = sparse_conv(x, m, 3, 16, 1, name = 'sp_conv4')
x = relu(x)
x, m = sparse_conv(x, m, 3, 16, 1, name = 'sp_conv5')
x = relu(x)
preds = conv(x, 1, 1)
loss = tf.reduce_mean(tf.reduce_sum(tf.pow(m2*(preds - d2), 2), axis = [1,2,3]))
return preds, loss, {}, {}, None
##############################################################
## Start of PnP-Depth modification ##
##############################################################
def make_sparse_cnn_pnp(m1, d1, m2, d2):
pnp_alpha = 0.01
pnp_iters = 5
x, m = sparse_conv(d1, m1, 11, 16, 1, name = 'sp_conv1') # x.shape = 16 x 512 x 1392 x 16, m.shape = 16 x 512 x 1392 x 1
x = relu(x)
first_x, first_m = x, m
def model_rear(x, m, reuse=False):
with tf.variable_scope('', reuse=reuse):
x, m = sparse_conv(x, m, 7, 16, 1, name = 'sp_conv2') # x.shape = 16 x 512 x 1392 x 16, m.shape = 16 x 512 x 1392 x 1
x = relu(x)
x, m = sparse_conv(x, m, 5, 16, 1, name = 'sp_conv3') # ... all the same
x = relu(x)
x, m = sparse_conv(x, m, 3, 16, 1, name = 'sp_conv4')
x = relu(x)
x, m = sparse_conv(x, m, 3, 16, 1, name = 'sp_conv5') # x.shape = 16 x 512 x 1392 x 16
x = relu(x)
x = conv(x, 1, 1) # 16 x 512 x 1392 x 1
return x
def _cond(xadv_m, i):
return tf.less(i, pnp_iters)
def _body(xadv_m, i):
pred_in = model_rear(*xadv_m)
loss = tf.reduce_mean(tf.reduce_sum(m1*tf.abs(pred_in - d1), axis = [1,2,3]))
grad = tf.gradients(loss, xadv_m[0])
xadv_m[0] = tf.stop_gradient(xadv_m[0] - pnp_alpha*tf.sign(grad[0])*xadv_m[1])
return xadv_m, i+1
xadv = [first_x, first_m]
xadv, _ = tf.while_loop(_cond, _body, (xadv, 0), back_prop=False, name='fast_gradient')
preds = model_rear(*xadv, True)
final_loss = tf.reduce_mean(tf.reduce_sum(tf.pow(m2*(preds - d1), 2), axis = [1,2,3]))
return preds, final_loss, {}, {}, None
##############################################################
## End of PnP-Depth modification ##
##############################################################