-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
520 lines (446 loc) · 19.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#!/usr/bin/env python
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import argparse
import os
import math
import sys
import random
import evaluate
import numpy as np
import transformers
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import (
AutoModelForCausalLM,
SchedulerType,
default_data_collator,
get_scheduler,
)
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
from utils.data.data_utils import create_prompt_dataset,_load_dataset
from utils.utils import print_rank_0, to_device, save_hf_format, set_random_seed, get_all_reduce_mean, get_optimizer_grouped_parameters, save_zero_three_model, load_hf_tokenizer,load_hf_chatglm_tokenizer
from utils.ds_utils import get_train_ds_config
from utils.module.lora import convert_linear_layer_to_lora, convert_lora_to_linear_layer, only_optimize_lora_parameters
from utils.model.model_utils import create_hf_model
from utils.prompter import Prompter
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def parse_args():
parser = argparse.ArgumentParser(
description=
"Finetune a transformers model on a causal language modeling task")
parser.add_argument('--data_path',
nargs='*',
default='Dahoas/rm-static',
help='Path to the training dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-path dataset2-path ...')
parser.add_argument(
"--model_name_or_path",
type=str,
help=
"Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--tokenizer_name",
type=str,
help=
"Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=16,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=16,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--max_seq_len",
type=int,
default=512,
help="The maximum sequence length.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-3,
help=
"Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay",
type=float,
default=0.,
help="Weight decay to use.")
parser.add_argument("--num_train_epochs",
type=int,
default=1,
help="Total number of training epochs to perform.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help=
"Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument('--train_files',
nargs='*',
default=['Dahoas/rm-static'],
help='The input training data file (a text file).')
parser.add_argument('--validation_files',
nargs='*',
default=['Dahoas/rm-static'],
help='An optional input evaluation data file to evaluate the perplexity on (a text file).')
parser.add_argument("--validation_split_percentage",
type=int,
default=5,
help="The percentage of the train set used as validation set in case there's no validation split")
parser.add_argument("--block_size",
type=int,
default=5,
help= "Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="cosine",
help="The scheduler type to use.",
choices=[
"linear", "cosine", "cosine_with_restarts", "polynomial",
"constant", "constant_with_warmup"
],
)
parser.add_argument(
"--use_auth_token",
type=bool,
default=False,
help="Will use the token generated when running `huggingface-cli login` (necessary to use this script with private models).")
parser.add_argument(
"--do_train",
type=bool,
default=False,
help="Whether to run training.")
parser.add_argument(
"--do_eval",
type=bool,
default=False,
help="Whether to run eval on the dev set.")
parser.add_argument("--max_train_samples",
type=int,
default=None,
help="For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set.")
parser.add_argument("--max_eval_samples",
type=int,
default=None,
help="For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set.")
parser.add_argument("--cache_dir",
type=str,
default=None,
help="Where do you want to store the pretrained models downloaded from huggingface.co")
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--output_dir",
type=str,
default=None,
help="Where to store the model.")
parser.add_argument("--seed",
type=int,
default=1234,
help="A seed for reproducible training.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--gradient_checkpointing',
action='store_true',
help='Enable HF gradient checkpointing for model.')
parser.add_argument('--disable_dropout',
action='store_true',
help='Disable the dropout of the model.')
# deepspeed features
parser.add_argument('--offload',
action='store_true',
help='Enable ZeRO Offload techniques.')
parser.add_argument(
'--zero_stage',
type=int,
default=0,
help='ZeRO optimization stage for Actor model (and clones).')
## LoRA for efficient training setting
parser.add_argument("--lora_dim",
type=int,
default=0,
help="If > 0, use LoRA for efficient training.")
parser.add_argument("--lora_module_name",
type=str,
default="decoder.layers.",
help="The scope of LoRA.")
parser.add_argument('--only_optimize_lora',
action='store_true',
help='Only optimize the LoRA parameters.')
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
# Validate settings
if args.gradient_checkpointing and args.lora_dim > 0:
assert (
not args.only_optimize_lora
), "--gradient_checkpointing and --only_optimize_lora cannot be enabled at the same time."
return args
def main():
args = parse_args()
if args.local_rank == -1:
device = torch.device("cuda")
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
# torch.distributed.init_process_group(backend='nccl')
deepspeed.init_distributed()
args.global_rank = torch.distributed.get_rank()
print_rank_0('-' * 20+ 'test-3', args.global_rank)
ds_config = get_train_ds_config(offload=args.offload,
stage=args.zero_stage)
ds_config[
'train_micro_batch_size_per_gpu'] = args.per_device_train_batch_size
ds_config[
'train_batch_size'] = args.per_device_train_batch_size * torch.distributed.get_world_size(
) * args.gradient_accumulation_steps
ds_config['gradient_accumulation_steps'] = args.gradient_accumulation_steps
# If passed along, set the training seed now.
set_random_seed(args.seed)
assert not args.offload, "zero-offload is not currently supported but coming soon!"
# torch.distributed.barrier()
print_rank_0('-' * 20+ 'test-4', args.global_rank)
# create common tokenizer based on actor model
if "chatglm" in args.tokenizer_name:
tokenizer = load_hf_chatglm_tokenizer(args.tokenizer_name,
trust_remote_code=True)
else:
tokenizer = load_hf_tokenizer(args.tokenizer_name,
fast_tokenizer=True)
tokenizer.pad_token = tokenizer.eos_token
# tokenizer.pad_token = tokenizer.gmask_token
print_rank_0('-' * 20+ 'test-5', args.global_rank)
model = create_hf_model(AutoModelForCausalLM,
args.model_name_or_path,
tokenizer,
ds_config,
disable_dropout=args.disable_dropout)
print_rank_0('-' * 20 + 'test-6', args.global_rank)
if args.lora_dim > 0:
model = convert_linear_layer_to_lora(model, args.lora_module_name,
args.lora_dim)
if args.only_optimize_lora:
model = only_optimize_lora_parameters(model)
print_rank_0('-' * 20 + 'test-7', args.global_rank)
# Prepare the data
raw_datasets = _load_dataset(args)
prompter = Prompter("alpaca")
train_on_inputs = True
tokenizer.padding_side = "left" # Allow batched inference
tokenizer.use_fast_tokenizer = True
if args.block_size is None:
cutoff_len = 512
else:
cutoff_len = args.block_size
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
# add_eos_token = tokenizer.add_eos_token
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["input"]
)
tokenized_user_prompt = tokenize(
user_prompt, add_eos_token=add_eos_token
)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if add_eos_token:
user_prompt_len -= 1
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
tokenized_datasets = raw_datasets.map(generate_and_tokenize_prompt)
if args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 2048:
block_size = 2048
else:
block_size = min(args.block_size, tokenizer.model_max_length)
if args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = tokenized_datasets["train"]
if args.max_train_samples is not None:
max_train_samples = min(
len(train_dataset), args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
train_dataset = train_dataset.shuffle(seed=args.seed)
if args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = tokenized_datasets["validation"]
if args.max_eval_samples is not None:
max_eval_samples = min(
len(eval_dataset), args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
metric = evaluate.load("accuracy.py")
def compute_metrics(eval_preds):
preds, labels = eval_preds
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
return metric.compute(predictions=preds, references=labels)
# DataLoaders creation:
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset)
eval_sampler = SequentialSampler(eval_dataset)
else:
train_sampler = DistributedSampler(train_dataset)
eval_sampler = DistributedSampler(eval_dataset)
train_dataloader = DataLoader(train_dataset,
collate_fn=default_data_collator,
sampler=train_sampler,
batch_size=args.per_device_train_batch_size)
eval_dataloader = DataLoader(eval_dataset,
collate_fn=default_data_collator,
sampler=eval_sampler,
batch_size=args.per_device_eval_batch_size)
# train_dataloader = DataLoader(train_dataset,
# collate_fn=transformers.DataCollatorForSeq2Seq(
# tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True),
# batch_size=args.per_device_train_batch_size)
# eval_dataloader = DataLoader(eval_dataset,
# collate_fn=transformers.DataCollatorForSeq2Seq(
# tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True ),
# batch_size=args.per_device_eval_batch_size)
def evaluation(model, eval_dataloader):
model.eval()
metrics = []
for step, batch in enumerate(eval_dataloader):
batch = to_device(batch, device)
with torch.no_grad():
outputs = model(**batch)
preds = preprocess_logits_for_metrics(outputs.logits,batch)
eval_preds= (preds,batch['labels'])
metric = compute_metrics(eval_preds)
metrics.append(metric['accuracy'])
return np.mean(metrics)
# Split weights in two groups, one with weight decay and the other not.
# optimizer_grouped_parameters = get_optimizer_grouped_parameters(
# model, args.weight_decay)
# AdamOptimizer = DeepSpeedCPUAdam if args.offload else FusedAdam
# optimizer = AdamOptimizer(optimizer_grouped_parameters,
# lr=args.learning_rate,
# betas=(0.9, 0.95))
#
# num_update_steps_per_epoch = math.ceil(
# len(train_dataloader) / args.gradient_accumulation_steps)
# lr_scheduler = get_scheduler(
# name=args.lr_scheduler_type,
# optimizer=optimizer,
# num_warmup_steps=args.num_warmup_steps,
# num_training_steps=args.num_train_epochs * num_update_steps_per_epoch,
# )
def create_moe_param_groups(model):
from deepspeed.moe.utils import split_params_into_different_moe_groups_for_optimizer
parameters = {
'params': [p for p in model.parameters()],
'name': 'parameters'
}
return split_params_into_different_moe_groups_for_optimizer(parameters)
parameters = filter(lambda p: p.requires_grad, model.parameters())
# if args.moe_param_group:
# parameters = create_moe_param_groups(model)
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
args=args,
config=ds_config,
model_parameters=parameters)
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
# Train!
print_rank_0("***** Running training *****", args.global_rank)
print_rank_0(
f"***** Evaluating perplexity, Epoch {0}/{args.num_train_epochs} *****",
args.global_rank)
perplexity = evaluation(model, eval_dataloader)
print_rank_0(f"ppl: {perplexity}", args.global_rank)
for epoch in range(args.num_train_epochs):
print_rank_0(
f"Beginning of Epoch {epoch+1}/{args.num_train_epochs}, Total Micro Batches {len(train_dataloader)}",
args.global_rank)
model.train()
for step, batch in enumerate(train_dataloader):
batch = to_device(batch, device)
outputs = model(**batch, use_cache=False)
loss = outputs.loss
model.backward(loss)
model.step()
# Evaluate perplexity on the validation set.
print_rank_0(
f"***** Evaluating perplexity, Epoch {epoch+1}/{args.num_train_epochs} *****",
args.global_rank)
perplexity = evaluation(model, eval_dataloader)
print_rank_0(f"ppl: {perplexity}", args.global_rank)
model.tput_timer.update_epoch_count()
if args.output_dir is not None:
print_rank_0('saving the final model ...', args.global_rank)
model = convert_lora_to_linear_layer(model)
if args.global_rank == 0:
save_hf_format(model, tokenizer, args)
if args.zero_stage == 3:
# For zero stage 3, each gpu only has a part of the model, so we need a special save function
save_zero_three_model(model,
args.global_rank,
args.output_dir,
zero_stage=args.zero_stage)
if __name__ == "__main__":
main()