-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom_walk.py
452 lines (363 loc) · 12.3 KB
/
random_walk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import sys
from os.path import dirname, join, realpath
dir_path = dirname(dirname(realpath(__file__)))
sys.path.insert(1, join(dir_path, 'utils'))
from abc import ABC, abstractmethod
import numpy as np
import matplotlib.pyplot as plt
from tqdm import trange
from env import RandomWalk
def get_true_value(env: RandomWalk, gamma: float) -> np.ndarray:
'''
Calculate true value of @env by Bellman equations
Params
------
env: RandomWalk env
gamma: discount factor
Return
------
true_value: true value of all of the states
'''
P = np.zeros((env.n_states, env.n_states))
r = np.zeros((env.n_states + 2, ))
true_value = np.zeros((env.n_states + 2, ))
env.reset()
for state in env.state_space:
trajectory = []
for action in env.action_space:
next_state, reward, terminated = env.step(action, state)
trajectory.append((action, next_state, reward, terminated))
for action, next_state, reward, terminated in trajectory:
if not terminated:
P[state - 1, next_state - 1] = env.transition_probs[action] * 1
r[next_state] = reward
u = np.zeros((env.n_states, ))
u[0] = env.transition_probs[-1] * 1 * (-1 + gamma * env.reward_space[0])
u[-1] = env.transition_probs[1] * 1 * (1 + gamma * env.reward_space[2])
r = r[1:-1]
true_value[1:-1] = np.linalg.inv(np.identity(env.n_states)
- gamma * P).dot(0.5 * (P.dot(r) + u))
true_value[0] = true_value[-1] = 0
return true_value
class EligibleTraceAgent(ABC):
'''
Agent abstract class
'''
def __init__(self, env: RandomWalk,
lambda_: float, alpha: float,
gamma: float) -> None:
'''
Params
------
env: RandomWalk env
lambda_: trace decay param
alpha: step size param
gamma: discount factor
'''
self.env = env
self.lambda_ = lambda_
self.alpha = alpha
self.gamma = gamma
self.weights = np.zeros(env.n_states + 2)
@abstractmethod
def __call__(self, env: RandomWalk,
lambda_: float, alpha: float,
gamma: float) -> object:
pass
def reset(self) -> None:
'''
Reset agent
'''
self.env.reset()
def random_policy(self) -> int:
'''
Policy choosing actions randomly
Return
------
action: chosen action
'''
action = np.random.choice(self.env.action_space)
return action
def get_value(self, state: int) -> float:
'''
Get value of state @state
Params
------
state: state of the agent
Return
------
value: state value
'''
value = self.weights[state]
return value
def get_feature_vector(self, state: int) -> np.ndarray:
'''
Get feature vector of state @state
Params
------
state: state of the agent
Return
------
feature_vector: feature vector corresponding to @state
'''
feature_vector = np.zeros(self.weights.shape)
feature_vector[state] = 1
return feature_vector
def get_grad(self, state: int) -> np.ndarray:
'''
Get gradient w.r.t @self.w at state @state
which is the feature vector @self.x since
using linear func approx
Params
------
state: state of the agent
Return
------
grad: gradient vector corresponding to @state
'''
feature_vector = self.get_feature_vector(state)
grad = feature_vector
return grad
@abstractmethod
def learn(self) -> None:
pass
@abstractmethod
def run(self) -> None:
pass
class OfflineLambdaReturn(EligibleTraceAgent):
'''
Offline Lambda-return agent
'''
def __init__(self, env: RandomWalk,
lambda_: float, alpha: float,
gamma: float) -> None:
'''
Params
------
env: RandomWalk env
lambda_: trace decay param
alpha: step size param
gamma: discount factor
'''
super().__init__(env, lambda_, alpha, gamma)
self.lambda_truncate = 1e-3
def __call__(self, env: RandomWalk,
lambda_: float, alpha: float,
gamma: float) -> object:
return OfflineLambdaReturn(env, lambda_, alpha, gamma)
def learn(self, state: int, error: float) -> None:
'''
Update weight vector by SGD method
Params
------
state: state of the agent
error: update amount
'''
self.weights[state] += error
def run(self) -> None:
'''
Perform an episode
'''
start_state = self.reset()
states = [start_state]
while True:
action = self.random_policy()
next_state, reward, terminated = self.env.step(action)
states.append(next_state)
if terminated:
T = len(states) - 1
for t in range(T):
lambda_return = 0
for n in range(1, T - t):
n_step_return = np.power(self.gamma, t + n) \
* self.get_value(states[t + n])
lambda_return += np.power(self.lambda_, t + n - 1) * n_step_return
if np.power(self.lambda_, t + n - 1) < self.lambda_truncate:
break
lambda_return *= 1 - self.lambda_
if np.power(self.lambda_, T - t - 1) >= self.lambda_truncate:
lambda_return += np.power(self.lambda_, T - t - 1) * reward
error = self.alpha * (lambda_return - self.get_value(states[t]))
self.learn(states[t], error)
break
class TDLambda(EligibleTraceAgent):
'''
TD(lambda) agent
'''
def __init__(self, env: RandomWalk,
lambda_: float, alpha: float,
gamma: float) -> None:
'''
Params
------
env: RandomWalk env
lambda_: trace decay param
alpha: step size param
gamma: discount factor
'''
super().__init__(env, lambda_, alpha, gamma)
def __call__(self, env: RandomWalk,
lambda_: float, alpha: float,
gamma: float) -> object:
return TDLambda(env, lambda_, alpha, gamma)
def learn(self, error: float) -> None:
'''
Update weight vector by SGD method
Params
------
error: update amount
'''
self.weights += error
def run(self) -> None:
'''
Perform an episode
'''
self.reset()
eligible_trace = np.zeros(self.weights.shape)
while True:
action = self.random_policy()
next_state, reward, terminated = self.env.step(action)
eligible_trace = self.gamma * self.lambda_ * eligible_trace \
+ self.get_grad(self.env.state)
td_error = reward + gamma * self.get_value(next_state) \
- self.get_value(self.env.state)
error = self.alpha * td_error * eligible_trace
self.learn(error)
if terminated:
break
class TrueOnlineTDLambda(EligibleTraceAgent):
'''
True online TD(lambda) agent
'''
def __init__(self, env: RandomWalk,
lambda_: float, alpha: float,
gamma: float) -> None:
'''
Params
------
env: RandomWalk env
lambda_: trace decay param
alpha: step size param
gamma: discount factor
'''
super().__init__(env, lambda_, alpha, gamma)
def __call__(self, env: RandomWalk,
lambda_: float, alpha: float,
gamma: float) -> object:
return TrueOnlineTDLambda(env, lambda_, alpha, gamma)
def learn(self, error: float) -> None:
'''
Update weight vector by SGD method
Params
------
error: update amount
'''
self.weights += error
def run(self) -> None:
'''
Perform an episode
'''
self.reset()
dutch_trace = np.zeros(self.weights.shape)
zero_vector = np.zeros(self.weights.shape)
old_state_value = 0
while True:
action = self.random_policy()
next_state, reward, terminated = self.env.step(action)
state_value = self.get_value(self.env.state)
state_feature_vector = self.get_feature_vector(self.env.state)
next_state_value = self.get_value(next_state)
td_error = reward + self.gamma * next_state_value - state_value
dutch_trace = self.gamma * self.lambda_ * dutch_trace \
+ (1 - self.alpha * self.gamma * self.lambda_ \
* dutch_trace.dot(state_feature_vector)) * state_feature_vector
error = self.alpha * ((td_error + state_value - old_state_value)
* dutch_trace - (state_value - old_state_value) * state_feature_vector)
self.learn(error)
old_state_value = next_state_value
if terminated:
break
if __name__ == '__main__':
n_states = 19
start_state = 10
terminal_states = [0, n_states + 1]
env = RandomWalk(n_states, start_state ,terminal_states)
gamma = 1
true_value = get_true_value(env, gamma)
episodes = 10
runs = 50
lambdas = [0, 0.4, 0.8, 0.9, 0.95, 0.975, 0.99, 1]
offline_lambd_return_alphas = [
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 0.55, 0.05),
np.arange(0, 0.22, 0.02),
np.arange(0, 0.11, 0.01)
]
td_lambda_alphas = [
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 0.99, 0.09),
np.arange(0, 0.55, 0.05),
np.arange(0, 0.33, 0.03),
np.arange(0, 0.22, 0.02),
np.arange(0, 0.11, 0.01),
np.arange(0, 0.044, 0.004)
]
true_online_td_lambda_alphas = [
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1),
np.arange(0, 0.88, 0.08),
np.arange(0, 0.44, 0.04),
np.arange(0, 0.11, 0.01)
]
methods = [
{
'agent': OfflineLambdaReturn,
'step_sizes': offline_lambd_return_alphas,
'img_path': './random-walk-offline-lambda-return.png'
},
{
'agent': TDLambda,
'step_sizes': td_lambda_alphas,
'img_path': './random-walk-td-lambda.png'
},
{
'agent': TrueOnlineTDLambda,
'step_sizes': true_online_td_lambda_alphas,
'img_path': './random-walk-true-online-td-lambda.png'
}
]
errors = []
for method_idx in range(len(methods)):
agent = methods[method_idx]['agent']
alphas = methods[method_idx]['step_sizes']
error = [np.zeros(len(alphas_)) for alphas_ in alphas]
for _ in trange(runs):
for lambda_idx in range(len(lambdas)):
for alpha_idx, alpha in enumerate(alphas[lambda_idx]):
agent = agent(env, lambdas[lambda_idx], alpha, gamma)
for ep in range(episodes):
agent.run()
values = [agent.get_value(state) for state in env.state_space]
error[lambda_idx][alpha_idx] += np.sqrt(np.mean(np.power
(values - true_value[1: -1], 2)))
errors.append(error)
for errors_ in errors:
for error in errors_:
error /= episodes * runs
for method_idx in range(len(methods)):
for lambda_idx in range(len(lambdas)):
plt.plot(alphas[lambda_idx], errors[method_idx][lambda_idx],
label= r'$\lambda$ = ' + str(lambdas[lambda_idx]))
plt.xlabel('alpha')
plt.ylabel('RMS error')
plt.legend(loc='upper right')
plt.savefig(methods[method_idx]['img_path'])
plt.close()