-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
313 lines (269 loc) · 13.4 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from typing import List, Tuple
import argparse, sys, random, os
import os.path as osp
from copy import deepcopy
import gymnasium as gym
from gymnasium.wrappers import AtariPreprocessing, TransformObservation
from gymnasium.spaces import Box
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as opt
from common.vf import MLPDeepQNet, CNNDeepQNet, MLPDuelingQNet
from common.utils import set_seed, make_atari_env, soft_update, hard_update, dim, to_tensor
from common.buffer import ReplayBuffer
from common.logger import Logger
class DQN:
"""
Deep-Q Learning
:param env: (str) Environment ID
:param exp_name: (str) Experiment name.
:param seed: (int) Seed for RNG.
:param atari: (bool) Whether to use atari environment
:param double_q: (bool) Whether to use double Q-learning
:param dueling_net: (bool) Whether to use dueling Q-network
:param epochs: (int) Number of epochs.
:param steps_per_epoch: (int) Maximum number of steps per epoch.
:param max_ep_len: (int) Maximum length of an episode.
:param soft_update: (bool) Whether to use soft update.
:param tau: (float) Soft (Polyak averaging) update coefficient
:param epsilon_init: (float) Initial value for epsilon linearly annealing
:param epsilon_final: (float) Final value for epsilon linearly annealing
:param epsilon_decay: (float) Decay value for epsilon linearly annealing
:param gamma: (float) Discount factor
:param lr: (float) Learning rate for Q-network optimizer
:param buffer_size: (int) Replay buffer size
:param batch_size: (int) Minibatch size
:param train_every: (int) Number of actions selected by the agent between successive SGD updates.
:param update_every: (int) Target network update frequency.
:param test_episodes: (int) Number of episodes to test the deterministic policy at the end of each epoch.
:param save: (bool) Whether to save the final model.
:param save_every: (int) Model saving frequency.
:param render: (bool) Whether to render the training result.
:param plot: (bool) Whether to plot the training statistics.
"""
def __init__(self, args) -> None:
self.env = make_atari_env(args.env) if args.atari else gym.make(args.env)
obs_dim = dim(self.env.observation_space)
action_dim = dim(self.env.action_space)
action_dim = self.env.action_space.shape[0] if isinstance(self.env.action_space, Box) \
else self.env.action_space.n
self.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
set_seed(args.seed)
if args.atari:
network = CNNDeepQNet
elif args.dueling_net:
network = MLPDuelingQNet
else:
network = MLPDeepQNet
self.Qnet = network(obs_dim, action_dim).to(self.device)
self.Qnet_target = deepcopy(self.Qnet)
for p in self.Qnet_target.parameters():
p.requires_grad = False
if args.double_q:
self.compute_td_error = self.compute_td_loss_double_q
else:
self.compute_td_error = self.compute_td_loss
self.optimizer = opt.Adam(self.Qnet.parameters(), lr=args.lr)
self.epochs = args.epochs
self.steps_per_epoch = args.steps_per_epoch
self.max_ep_len = args.max_ep_len
self.soft_update = args.soft_update
self.tau = args.tau
self.epsilon_init = args.epsilon_init
self.epsilon_final = args.epsilon_final
self.epsilon_decay = args.epsilon_decay
self.gamma = args.gamma
self.buffer = ReplayBuffer(args.buffer_size)
self.batch_size = args.batch_size
self.train_every = args.train_every
self.update_every = args.update_every
self.test_episodes = args.test_episodes
self.save = args.save
self.save_every = args.save_every
self.render = args.render
self.plot = args.plot
self.step = 0
if args.exp_name:
exp_name = args.exp_name
log_dir = os.path.join(os.getcwd(), 'data', exp_name, f'{exp_name}_s{args.seed}')
else:
log_dir = None
config_dict = vars(args)
config_dict['algo'] = 'dqn'
self.logger = Logger(log_dir=log_dir)
self.logger.save_config(config_dict)
self.logger.set_saver(self.Qnet)
def anneal_epsilon(self, ep: int) -> float:
"""Epsilon linearly annealing
:param ep: current episode
:return epsilon: epsilon for greedy-epsilon
"""
return self.epsilon_final + (self.epsilon_init - self.epsilon_final) \
* np.exp(-1. * ep / self.epsilon_decay)
def select_action(self, observation: np.ndarray, epsilon: float=0.0) -> int:
"""
Select action according to the behavior policy
here we use epsilon-greedy as behavior policy
"""
if random.random() <= epsilon:
action = self.env.action_space.sample()
else:
observation = to_tensor(observation, self.device)
with torch.no_grad():
action_values = self.Qnet(observation.float())
action = torch.argmax(action_values).item()
return action
def compute_td_loss(self, observations, actions, rewards, next_observations, terminated):
"""Compute TD error error according to Q-learning"""
q_target_next = torch.max(self.Qnet_target(next_observations), dim=1)[0].unsqueeze(1)
q_target = rewards + self.gamma * q_target_next * (1 - terminated)
q_expected = self.Qnet(observations).gather(1, actions)
loss = F.mse_loss(q_expected, q_target)
return loss, q_expected
def compute_td_loss_double_q(self, observations, actions, rewards, next_observations, terminated):
"""Compute TD error according to double Q-learning"""
greedy_actions = torch.argmax(self.Qnet(next_observations), dim=1).unsqueeze(1)
q_target_greedy = self.Qnet_target(next_observations).gather(1, greedy_actions)
q_target = rewards.view(-1, 1) + self.gamma * q_target_greedy * (1 - terminated.view(-1, 1))
q_expected = self.Qnet(observations).gather(1, actions)
loss = F.mse_loss(q_expected, q_target)
return loss, q_expected
def update_target_params(self) -> None:
"""Update target network's parameters"""
if self.soft_update:
soft_update(self.Qnet, self.Qnet_target, self.tau)
else:
hard_update(self.Qnet, self.Qnet_target)
def learn(self) -> None:
if self.step % self.train_every == 0 and len(self.buffer) >= self.batch_size:
observations, actions, rewards, next_observations, terminated = self.buffer.get(self.batch_size)
observations = observations.float().to(self.device)
actions = actions.long().to(self.device)
rewards = rewards.float().to(self.device)
next_observations = next_observations.float().to(self.device)
terminated = terminated.float().to(self.device)
loss, value = self.compute_td_error(observations, actions, rewards, next_observations, terminated)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.logger.add({
'loss': loss.item(),
'values': value.detach().cpu().numpy()
})
if self.step % self.update_every == 0:
self.update_target_params()
self.step += 1
def load(self, model_path: str) -> None:
self.ac.load_state_dict(torch.load(model_path))
def test(self) -> None:
env = deepcopy(self.env)
for _ in range(self.test_episodes):
observation, _ = env.reset()
rewards = []
while True:
action = self.select_action(observation)
observation, reward, terminated, truncated, _ = env.step(action)
rewards.append(reward)
if terminated or truncated or len(rewards) == self.max_ep_len:
self.logger.add({
'test-episode-return': sum(rewards),
'test-episode-length': len(rewards)
})
break
def train(self) -> None:
total_env_interacts = 0
ep = 0
for epoch in range(1, self.epochs + 1):
while True:
epsilon = self.anneal_epsilon(ep)
observation, _ = self.env.reset()
rewards = []
while True:
action = self.select_action(observation, epsilon)
next_observation, reward, terminated, truncated, _ = self.env.step(action)
rewards.append(reward)
self.buffer.add(observation, action, reward, next_observation, terminated)
self.learn()
observation = next_observation
if terminated or truncated or len(rewards) == self.max_ep_len or self.step % self.steps_per_epoch == 0:
self.logger.add({
'episode-return': sum(rewards),
'episode-length': len(rewards)
})
ep += 1
break
if self.step % self.steps_per_epoch == 0:
if self.save and epoch % self.save_every == 0:
self.logger.save_state()
self.test()
self.logger.log_epoch('epoch', epoch)
self.logger.log_epoch('loss', average_only=True)
self.logger.log_epoch('values', need_optima=True)
self.logger.log_epoch('episode-return', need_optima=True)
self.logger.log_epoch('episode-length', average_only=True)
self.logger.log_epoch('test-episode-return', need_optima=True)
self.logger.log_epoch('test-episode-length', average_only=True)
self.logger.log_epoch('total-env-interacts', epoch * self.steps_per_epoch)
self.logger.dump_epoch()
break
self.env.close()
if self.render:
self.logger.render(self.select_action)
if self.plot:
self.logger.plot()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Deep Q-Learning')
parser.add_argument('--env', type=str, default='LunarLander-v2',
help='OpenAI enviroment name')
parser.add_argument('--exp-name', type=str, default='dqn',
help='Experiment name')
parser.add_argument('--seed', type=int, default=0,
help='Seed for RNG')
parser.add_argument('--atari', action='store_true',
help='Whether to use atari environment')
parser.add_argument('--double-q', action='store_true',
help='Whether to use double Q-learning')
parser.add_argument('--dueling-net', action='store_true',
help='Whether to use dueling Q-network')
parser.add_argument('--epochs', type=int, default=100,
help = 'Number of epochs')
parser.add_argument('--steps-per-epoch', type=int, default=4000,
help='Maximum number of steps for each epoch')
parser.add_argument('--max-ep-len', type=int, default=1000,
help='Maximum episode/trajectory length')
parser.add_argument('--soft-update', action='store_true',
help='Whether to use soft update')
parser.add_argument('--tau', type=float, default=1e-3,
help='Soft (Polyak averaging) update coefficient')
parser.add_argument('--epsilon-init', type=float, default=1,
help='Initial value of epsilon')
parser.add_argument('--epsilon-final', type=float, default=1e-2,
help='Final value of epsilon')
parser.add_argument('--epsilon-decay', type=float, default=200,
help='Final value of epsilon')
parser.add_argument('--gamma', type=float, default=0.99,
help='Discount factor')
parser.add_argument('--lr', type=float, default=5e-4,
help='Learning rate')
parser.add_argument('--buffer-size', type=int, default=100000,
help='Replay buffer size')
parser.add_argument('--batch-size', type=int, default=64,
help='Batch size')
parser.add_argument('--train-every', type=int, default=4,
help='Number of steps between optimization steps')
parser.add_argument('--update-every', type=int, default=4,
help='Target network update frequency')
parser.add_argument('--test-episodes', type=int, default=10,
help='Number of episodes to test the deterministic policy at the end of each epoch')
parser.add_argument('--save', action='store_true',
help='Whether to save the final model')
parser.add_argument('--save-every', type=int, default=1,
help='Model saving frequency')
parser.add_argument('--render', action='store_true',
help='Whether to render the training result')
parser.add_argument('--plot', action='store_true',
help='Whether to plot the training statistics')
args = parser.parse_args()
agent = DQN(args)
agent.train()