-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg.py
350 lines (305 loc) · 15.8 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import argparse, random, os
from typing import List
from copy import deepcopy
import gymnasium as gym
from gymnasium.spaces import Space, Box, Discrete
import torch
import torch.nn as nn
import numpy as np
from torch.optim import Adam
from torch.autograd import grad
import torch.nn.functional as F
from torch.distributions import Categorical, Gumbel
from common.policy import DeterministicPolicy, DiscretePolicy
from common.vf import StateActionValueFunction
from common.utils import soft_update, dim, set_seed, to_tensor
from common.buffer import ReplayBuffer
from common.logger import Logger
class ActorCritic(nn.Module):
def __init__(self,
observation_space: Space,
action_space: Space,
hidden_sizes: List[int]=[256, 256],
activation=nn.ReLU,
device: str='cpu') -> None:
super().__init__()
obs_dim = dim(observation_space)
action_dim = dim(action_space)
# continuous action space
if isinstance(action_space, Box):
action_limit = action_space.high[0]
self.actor = DeterministicPolicy(obs_dim, action_dim, hidden_sizes,
activation, nn.Tanh, action_limit).to(device)
self.critic = StateActionValueFunction(obs_dim, action_dim, hidden_sizes,
activation).to(device)
# discrete action space
elif isinstance(action_space, Discrete):
self.actor = DiscretePolicy(obs_dim, action_dim, hidden_sizes,
activation, nn.Identity).to(device)
self.critic = StateActionValueFunction(obs_dim, 1, hidden_sizes, activation).to(device)
class DDPG:
"""
Deep Determinisitic Policy Gradient
:param env: (str) Environment ID.
:param exp_name: (str) Experiment name.
:param seed: (int) Seed for RNG.
:param hidden_sizes: (List[int]) Sizes of policy & Q networks' hidden layers
:param mu_lr: (float) Learning rate for policy optimizer.
:param q_lr: (float) Learning rate for value function optimizer.
:param lambd: (float) Softmax temperature parameter, used in Gumbel-Softmax trick
:param epochs: (int) Number of epochs.
:param steps_per_epoch: (int) Maximum number of steps per epoch.
:param max_ep_len: (int) Maximum length of an episode.
:param buffer_size: (int) Replay buffer size.
:param batch_size: (int) Minibatch size.
:param start_step: (int) Start step to begin select action according to policy network.
:param update_every: (int) Parameters update frequency.
:param update_after: (int) Number of steps after which paramters update is allowed.
This guarantees there are enough number of training experience in the replay buffer.
:param gamma: (float) Discount factor
:param tau: (float) Soft (Polyak averaging) update coefficient
:param sigma: (float) Standard deviation of mean-zero Gaussian noise for exploration.
The original DDPG used Ornstein-Uhlenbeck process instead.
:param test_episodes: (int) Number of episodes to test the deterministic policy at the end of each episode.
:param save: (bool) Whether to save the final model.
:param save_every: (int) Model saving frequency.
:param render: (bool) Whether to render the training result.
:param plot: (bool) Whether to plot the statistics.
"""
def __init__(self, args) -> None:
self.env = gym.make(args.env)
set_seed(args.seed)
observation_space = self.env.observation_space
action_space = self.env.action_space
self.action_dim = dim(action_space)
if isinstance(action_space, Discrete):
self.is_continuous = False
self.lambd = args.lambd
else:
self.action_limit = action_space.high[0]
self.is_continuous = True
self.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
self.ac = ActorCritic(observation_space, action_space, args.hidden_sizes, device=self.device)
self.ac_target = deepcopy(self.ac)
for p in self.ac_target.parameters():
p.requires_grad = False
self.actor_opt = Adam(self.ac.actor.parameters(), lr=args.mu_lr)
self.critic_opt = Adam(self.ac.critic.parameters(), lr=args.q_lr)
self.epochs = args.epochs
self.steps_per_epoch = args.steps_per_epoch
self.max_ep_len = args.max_ep_len
self.buffer = ReplayBuffer(args.buffer_size)
self.batch_size = args.batch_size
self.start_step = args.start_step
self.update_every = args.update_every
self.update_after = args.update_after
self.gamma = args.gamma
self.tau = args.tau
self.sigma = args.sigma
self.test_episodes = args.test_episodes
self.save = args.save
self.save_every = args.save_every
self.render = args.render
self.plot = args.plot
if args.exp_name:
exp_name = args.exp_name
log_dir = os.path.join(os.getcwd(), 'data', exp_name, f'{exp_name}_s{args.seed}')
else:
log_dir = None
self.logger = Logger(log_dir=log_dir)
config_dict = vars(args)
config_dict['algo'] = 'ddpg'
self.logger.save_config(config_dict)
self.logger.set_saver(self.ac)
def update_params(self) -> None:
"""Update policy and value networks' parameters"""
def compute_mu_loss(observations):
if self.is_continuous:
actions_ = self.ac.actor(observations)
else:
'''
Gumbel-Softmax trick: (arXiv:1611.00712 version)
logits \in (-infty, infty)
-> softmax(logits) \in (0, 1)
-> -log(softmax(logits)) \in (0, infty)
Considering -log(softmax(logits)) as alphas
Sampling G = -log(-log(U)) for U ~ Unif(0, 1)
Gumbel-Max: a = argmax_i(log(alpha_i) + G_i)
Gumbel-Softmax: a_k = softmax([log(alphas) + G] / lambda)_k
'''
logits = self.ac.actor(observations) # (B x A)
alphas = -F.log_softmax(logits, dim=1) # (B x A)
gumbel_noises = Gumbel(0, 1).sample(alphas.shape) # (B x A)
noised_alphas = torch.log(alphas) + gumbel_noises # (B x A)
actions_gm = torch.argmax(noised_alphas, dim=1) # (B, )
# Convert to one-hot to have the shape (B x A)
actions_gm = F.one_hot(actions_gm, num_classes=self.action_dim) # (B x A)
actions_gs = F.softmax(noised_alphas / self.lambd, dim=1) # (B x A)
actions_ = (actions_gm - actions_gs).detach() + actions_gs # (B x A)
# Convert from one-hot to normal form of action
actions_ = torch.argmax(actions_, dim=1) # (B, )
loss = -self.ac.critic(observations, actions_).mean()
return loss
def compute_targets(rewards, next_observations, terminated):
if self.is_continuous:
actions_target = self.ac_target.actor(next_observations)
else:
logits_target = self.ac_target.actor(next_observations)
actions_target_dist = Categorical(logits=logits_target)
actions_target = actions_target_dist.sample()
return rewards + self.gamma * (1 - terminated) \
* self.ac_target.critic(next_observations, actions_target)
def compute_q_loss(observations, actions, targets):
q_values = self.ac.critic(observations, actions)
loss = ((q_values - targets) ** 2).mean()
return loss, q_values
# (B x O), (B x A) or (B x 1), (B x 1), (B x O), (B x 1)
observations, actions, rewards, next_observations, terminated \
= map(lambda x: x.to(self.device), self.buffer.get(self.batch_size))
targets = compute_targets(rewards, next_observations, terminated)
self.critic_opt.zero_grad()
q_loss, q_values = compute_q_loss(observations, actions, targets)
q_loss.backward()
self.critic_opt.step()
self.actor_opt.zero_grad()
mu_loss = compute_mu_loss(observations)
mu_loss.backward()
self.actor_opt.step()
# Update target networks parameters according to Polyak averaging
soft_update(self.ac, self.ac_target, self.tau)
self.logger.add({
'mu-loss': mu_loss.item(),
'q-loss': q_loss.item(),
'q-values': q_values.detach().cpu().numpy()
})
def select_action(self, observation: np.ndarray, deterministic=True, noise_sigma: float=0.0) -> np.ndarray:
observation = to_tensor(observation, self.device)
with torch.no_grad():
if self.is_continuous:
epsilon = noise_sigma * np.random.randn(self.action_dim)
action = self.ac.actor(observation).cpu().numpy() + epsilon
return np.clip(action, -self.action_limit, self.action_limit)
else:
logits = self.ac.actor(observation) # (A, )
if deterministic:
return torch.argmax(logits).cpu().numpy()
action_dist = Categorical(logits=logits)
action = action_dist.sample() # (A, )
return action.cpu().numpy()
def load(self, model_path: str) -> None:
"""Model loading"""
self.ac.load_state_dict(torch.load(model_path))
def test(self) -> None:
env = deepcopy(self.env)
for _ in range(self.test_episodes):
observation, _ = env.reset()
rewards = []
while True:
action = self.select_action(observation)
observation, reward, terminated, truncated, _ = env.step(action)
rewards.append(reward)
if terminated or len(rewards) == self.max_ep_len:
self.logger.add({
'test-episode-return': sum(rewards),
'test-episode-length': len(rewards)
})
break
def train(self) -> None:
step = 0
for epoch in range(1, self.epochs + 1):
while True:
observation, _ = self.env.reset()
rewards = []
while True:
if (epoch - 1) * self.steps_per_epoch + step <= self.start_step:
# SpinniningUP's trick to ultilize exploration at the beginning
action = self.env.action_space.sample()
else:
action = self.select_action(observation, deterministic=False, noise_sigma=self.sigma)
next_observation, reward, terminated, truncated, _ = self.env.step(action)
rewards.append(reward)
step += 1
# Set `terminated` to `False` in case episode is forced to stopped by the env
terminated = False if len(rewards) == self.max_ep_len else terminated
self.buffer.add(observation, action, reward, next_observation, terminated)
observation = next_observation
if step >= self.update_after and step % self.update_every == 0:
for _ in range(self.update_every):
self.update_params()
if terminated or len(rewards) == self.max_ep_len or step % self.steps_per_epoch == 0:
self.logger.add({
'episode-return': sum(rewards),
'episode-length': len(rewards)
})
break
if step % self.steps_per_epoch == 0:
if self.save and epoch % self.save_every == 0:
self.logger.save_state()
self.test()
self.logger.log_epoch('epoch', epoch)
self.logger.log_epoch('mu-loss', average_only=True)
self.logger.log_epoch('q-loss', average_only=True)
self.logger.log_epoch('q-values', need_optima=True)
self.logger.log_epoch('episode-return', need_optima=True)
self.logger.log_epoch('episode-length', average_only=True)
self.logger.log_epoch('test-episode-return', need_optima=True)
self.logger.log_epoch('test-episode-length', average_only=True)
self.logger.log_epoch('total-env-interacts', step)
self.logger.dump_epoch()
break
self.env.close()
if self.render:
self.logger.render(self.select_action)
if self.plot:
self.logger.plot()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Deep Deterministic Policy Gradient')
parser.add_argument('--env', type=str, default='HalfCheetah-v4',
help='Environment ID')
parser.add_argument('--exp-name', type=str, default='ddpg',
help='Experiment name')
parser.add_argument('--seed', type=int, default=0,
help='Seed for RNG')
parser.add_argument('--hidden-sizes', nargs='+', type=int, default=[256, 256],
help="Sizes of policy & value function networks' hidden layers")
parser.add_argument('--mu-lr', type=float, default=1e-3,
help='Learning rate for policy optimizer')
parser.add_argument('--q-lr', type=float, default=1e-3,
help='Learning rate for value function optimizer')
parser.add_argument('--lambd', type=float, default=1.0,
help='Softmax temperature parameter, used in Gumbel-Softmax trick')
parser.add_argument('--epochs', type=int, default=50,
help='Number of epochs')
parser.add_argument('--steps-per-epoch', type=int, default=4000,
help='Maximum number of steps for each epoch')
parser.add_argument('--max-ep-len', type=int, default=1000,
help='Maximum episode/trajectory length')
parser.add_argument('--buffer-size', type=int, default=1000000,
help='Replay buffer size')
parser.add_argument('--batch-size', type=int, default=100,
help='Minibatch size')
parser.add_argument('--start-step', type=int, default=10000,
help='Start step to begin action selection according to policy network')
parser.add_argument('--update-every', type=int, default=50,
help='Parameters update frequency')
parser.add_argument('--update-after', type=int, default=1000,
help='Number of steps after which update is allowed')
parser.add_argument('--gamma', type=float, default=0.99,
help='Discount factor')
parser.add_argument('--tau', type=float, default=0.005,
help='Soft (Polyak averaging) update coefficient')
parser.add_argument('--sigma', type=float, default=0.1,
help='Standard deviation of mean-zero Gaussian noise for exploration')
parser.add_argument('--test-episodes', type=int, default=10,
help='Number of episodes to test the deterministic policy at the end of each epoch')
parser.add_argument('--save', action='store_true',
help='Whether to save the final model')
parser.add_argument('--save-every', type=int, default=1,
help='Model saving frequency')
parser.add_argument('--render', action='store_true',
help='Whether to render the training result')
parser.add_argument('--plot', action='store_true',
help='Whether to plot the training statistics')
args = parser.parse_args()
agent = DDPG(args)
agent.train()