-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_create_data_loader.py
231 lines (190 loc) · 11.3 KB
/
3_create_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
from torch.utils.data import Dataset, DataLoader
import faiss
import random
import pandas as pd
import numpy as np
import time
import os
import argparse
from collections import Counter
from functions import split_by_artist_given, split_by_strata_artist, split_by_strata_artist_designer, split_by_artist_random, split_based_on_popularity, split_based_on_unpopularity
os.environ['KMP_DUPLICATE_LIB_OK']='True'
class TripletLossDataset_features(Dataset):
def __init__(self, mode, df, num_examples,feature,device, positive_similarity_based, negative_similarity_based):
self.mode = mode
self.feature = feature
self.num_examples = num_examples
self.device = device
self.positive_similarity_based = positive_similarity_based
self.negative_similarity_based = negative_similarity_based
self.df = df[df['mode'] == mode].reset_index(drop=True)
self.dict_influence_indexes, self.painter_indexes, self.dict_influencers = self.get_dictionaries()
self.filtered_indices = self.filter_indices()
self.dimension = self.df.loc[0,self.feature].shape[0]
self.positive_examples = self.positive_examples_group()
self.negative_examples = self.get_negative_examples()
print('length of df:',len(self.df))
def filter_indices(self):
'''Filter indices based on mode and number of examples per anchor'''
all_artist_names = set(self.df['artist_name'])
self.df['influenced_by'] = self.df['influenced_by'].apply(lambda artists_list: [artist for artist in artists_list if artist in all_artist_names])
df_with_influencers = self.df[self.df['influenced_by'].apply(len)>0]
filtered = df_with_influencers.index.tolist()
return filtered
def get_dictionaries(self):
dict_influenced_by = self.df.groupby('artist_name')['influenced_by'].first().to_dict()
dict_influencers = {}
for key, value in dict_influenced_by.items():
for v in value:
if v not in dict_influencers:
dict_influencers[v] = []
dict_influencers[v].append(key)
for key in dict_influenced_by.keys():
if key not in dict_influencers:
dict_influencers[key] = []
artist_to_paintings = {}
for index, row in self.df.iterrows():
artist = row['artist_name']
artist_to_paintings.setdefault(artist, []).append(index)
artist_to_influencer_paintings = {artist: [painting for influencer in influencers if influencer in artist_to_paintings for painting in artist_to_paintings[influencer]] for artist, influencers in dict_influenced_by.items()}
return artist_to_influencer_paintings, artist_to_paintings, dict_influencers
def vector_similarity_search_group(self,query_indexes, index_list):
'''Search for similar vectors in the dataset using faiss library'''
k = self.num_examples + 1
index_list = [i for i in index_list if i < len(self.df)]
xb = torch.stack(self.df[self.feature].tolist())[index_list]
d = xb.shape[1]
index = faiss.IndexFlatL2(d)
if xb.shape[0] < 1000:
index = faiss.IndexFlatL2(d)
else:
nlist = 10
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFFlat(quantizer, d, nlist)
if self.device == 'cuda':
index = faiss.index_cpu_to_all_gpus(index)
index.train(xb.cpu().numpy() if self.device != 'cuda' else xb)
index.add(xb.cpu().numpy() if self.device != 'cuda' else xb)
results = []
for query in query_indexes:
query_vector = self.df[self.feature].tolist()[query]
D, I = index.search(query_vector.reshape(1,-1), k)
I = list(I[0][1:])
I = [index_list[i] for i in I]
results.append(I)
return results
def get_negative_examples(self):
'''Get negative examples
random_negative: if True, return random negative examples
else return negative examples based on similarity to the anchor'''
self.df[f'neg_ex_{self.feature}'] = [None]*len(self.df)
grouped = self.df.groupby('artist_name')
for artist, group in grouped:
query = list(group.index)
index_list = self.dict_influence_indexes[artist]
artist_indexes = self.painter_indexes[artist]
influencer_artist = self.dict_influencers[artist]
if influencer_artist != []:
influencer_indexes = [self.painter_indexes[i] for i in influencer_artist ]
influencer_indexes_list = [item for sublist in influencer_indexes for item in sublist]
remaining_index_list = list(set(list(self.df.index)) - set(index_list) - set(artist_indexes) - set(influencer_indexes_list))
else:
remaining_index_list = list(set(list(self.df.index)) - set(index_list) - set(artist_indexes))
if self.negative_similarity_based:
results = self.vector_similarity_search_group(query, remaining_index_list)
for i,q in enumerate(query):
self.df.at[q,f'neg_ex_{self.feature}'] = results[i]
else:
for q in query:
self.df.at[q,f'neg_ex_{self.feature}'] = random.sample(remaining_index_list, self.num_examples)
return self.df[f'neg_ex_{self.feature}']
def positive_examples_group(self):
'''Get positive examples for each anchor
random_positive: if True, return N random positive examples, if there are less than N examples sample with replacement
else return N positive examples based on similarity to the anchor'''
grouped = self.df.groupby('artist_name')
self.df[f'pos_ex_{self.feature}'] = [None]*len(self.df)
for artist, group in grouped:
query = list(group.index)
query = [i for i in query]
index_list = self.dict_influence_indexes[artist]
if len(index_list) == 0:
continue
else:
if self.positive_similarity_based:
if len(index_list) >= self.num_examples:
results = self.vector_similarity_search_group(query, index_list)
for i, q in enumerate(query):
self.df.at[q, f'pos_ex_{self.feature}'] = results[i]
else:
for q in query:
self.df.at[q, f'pos_ex_{self.feature}'] = random.choices(index_list, k=self.num_examples)
else:
for q in query:
if len(index_list) >= self.num_examples:
self.df.at[q, f'pos_ex_{self.feature}'] = random.sample(index_list, self.num_examples)
else:
self.df.at[q, f'pos_ex_{self.feature}'] = random.choices(index_list, k=self.num_examples)
return self.df[f'pos_ex_{self.feature}']
def __len__(self):
return len(self.filtered_indices)
def __getitem__(self, index):
index = self.filtered_indices[index]
negative_indexes = self.negative_examples.iloc[index]
positive_indexes = self.positive_examples.iloc[index]
img_anchor = self.df[self.feature][index].repeat(self.num_examples,1)
img_pos = torch.stack([self.df[self.feature][i] for i in positive_indexes])
img_neg = torch.stack([self.df[self.feature][i] for i in negative_indexes])
return img_anchor, img_pos, img_neg
def main(dataset_name,feature,data_split, num_examples, positive_based_on_similarity, negative_based_on_similarity):
if dataset_name == 'wikiart':
if 'clip' in feature:
df = pd.read_pickle('DATA/Dataset/wikiart/wikiartINFL_clip.pkl')
else:
df = pd.read_pickle('DATA/Dataset/wikiart/wikiartINFL.pkl')
if data_split == "stratified_artists":
df = split_by_strata_artist(df)
elif data_split == "random_artists":
df = split_by_artist_random(df)
elif data_split == "popular_artists":
df = split_based_on_popularity(df)
elif data_split == "unpopular_artists":
df = split_based_on_unpopularity(df)
elif dataset_name == 'fashion':
if data_split == "stratified_artists":
if os.path.exists('DATA/Dataset/iDesigner/idesignerINFL_mode.pkl'):
df = pd.read_pickle('DATA/Dataset/iDesigner/idesignerINFL_mode.pkl')
else:
df = pd.read_pickle('DATA/Dataset/iDesigner/idesignerINFL.pkl')
df = split_by_strata_artist_designer(df)
df.to_pickle('DATA/Dataset/iDesigner/idesignerINFL_mode.pkl')
elif data_split == "random_artists":
df = pd.read_pickle('DATA/Dataset/iDesigner/idesignerINFL.pkl')
df = split_by_artist_random(df)
elif data_split == "popular_artists":
df = split_based_on_popularity(df)
save_path = f'DATA/Dataset_toload/{dataset_name}/{data_split}'
os.makedirs(save_path, exist_ok=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'mps')
how_feature_positive = 'posfaiss' if positive_based_on_similarity else 'posrandom'
how_feature_negative = 'negfaiss' if negative_based_on_similarity else 'negrandom'
train_dataset = TripletLossDataset_features('train', df, num_examples, feature, device, positive_based_on_similarity, negative_based_on_similarity)
val_dataset = TripletLossDataset_features('val', df, num_examples, feature, device, positive_based_on_similarity, negative_based_on_similarity)
torch.save(train_dataset, os.path.join(save_path, f'train_dataset_{feature}_{how_feature_positive}_{how_feature_negative}_{num_examples}.pt'))
torch.save(val_dataset, os.path.join(save_path, f'val_dataset_{feature}_{how_feature_positive}_{how_feature_negative}_{num_examples}.pt'))
if __name__ == "__main__":
start_time = time.time()
parser = argparse.ArgumentParser(description="Create dataset for triplet loss network on wikiart to predict influence.")
parser.add_argument('--dataset_name', type=str, default='wikiart', choices=['wikiart', 'fashion'])
parser.add_argument('--feature', type=str, default='image_features', help='image_features text_features image_text_features')
parser.add_argument('--artist_splits', action='store_true',help= 'create dataset excluding a gievn artist from training set' )
parser.add_argument('--data_split', type=str, default = 'stratified_artists', help= ['stratified_artists', 'random_artists' 'popular_artists'])
parser.add_argument('--num_examples', type=int, default=10, help= 'How many examples for each anchor')
parser.add_argument('--positive_based_on_similarity',action='store_true',help='Sample positive examples based on vector similarity or randomly')
parser.add_argument('--negative_based_on_similarity', action='store_true',help='Sample negative examples based on vector similarity or randomly')
args = parser.parse_args()
main(args.dataset_name,args.feature,args.data_split, args.num_examples,args.positive_based_on_similarity, args.negative_based_on_similarity)
end_time = time.time()
elapsed_time = end_time - start_time
print("Time required to build dataset: {:.2f} seconds".format(elapsed_time))