-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathkeras_sample.py
32 lines (29 loc) · 1.35 KB
/
keras_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# ==============================================================================
# Copyright 2018-2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
import numpy as np
import ngraph_bridge
# A simple script to run inference and training on resnet 50
model = ResNet50(weights='imagenet')
batch_size = 128
img = np.random.rand(batch_size, 224, 224, 3)
preds = model.predict(preprocess_input(img))
print('Predicted:', decode_predictions(preds, top=3)[0])
model.compile(tf.keras.optimizers.SGD(), loss='categorical_crossentropy')
preds = model.fit(
preprocess_input(img), np.zeros((batch_size, 1000), dtype='float32'))
print('Ran a train round')