-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_federated_client.py
243 lines (208 loc) · 10.3 KB
/
train_federated_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import flwr as fl
import argparse
from torch.optim import AdamW
from torchtext.data import TabularDataset, BucketIterator
from collections import OrderedDict
from tqdm.auto import tqdm
from Mylstm import MyLSTM
from save_load_util import save_model, save_metrics
from test_model import test
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def get_parser():
parser = argparse.ArgumentParser(description='train lstm model by training and validation dataset')
parser.add_argument('train_path', type=str,
help='specify the path of the training dataset file')
parser.add_argument('valid_path', type=str,
help='specify the path of the validation dataset file')
parser.add_argument('test_path', type=str,
help='specify the path of the testing dataset file')
parser.add_argument('-s', '--saving-directory', type=str, default='.',
help='specify working directory to save model and metrics files, default current')
parser.add_argument('-tf', '--text-field-path', type=str, default='./field/text_field.pth',
help='specify the path of the text field saving file')
parser.add_argument('-lf', '--label-field-path', type=str, default='./field/label_field.pth',
help='specify the path of the label field saving file')
return parser
model = None # define global model variable
local_config = None # define global client config set by main argument
def load_data(data_file_path, text_field_path, label_field_path,
batch_size, is_shuffle=False):
''' load .csv file data and return dataloader '''
text_field = torch.load(text_field_path)
label_field = torch.load(label_field_path)
fields = [('text', text_field), ('label', label_field)]
data = TabularDataset(path=data_file_path, format='CSV',
fields=fields, skip_header=True)
data_iter = BucketIterator(data, batch_size=batch_size,
sort_key=lambda x: len(x.text), shuffle=is_shuffle,
device=device, sort=True, sort_within_batch=True)
return data_iter
def train(server_round, model, optimizer, train_loader, valid_loader,
num_epochs, eval_time_in_epoch, file_path,
criterion = nn.CrossEntropyLoss(),
best_valid_acc = 0.0):
# eval every N step
eval_every = []
for i in range(eval_time_in_epoch):
if i == eval_time_in_epoch - 1:
eval_every.append(len(train_loader) // eval_time_in_epoch +
len(train_loader) % eval_time_in_epoch)
else:
eval_every.append(len(train_loader) // eval_time_in_epoch)
# initialize metrics values
train_correct = 0
valid_correct = 0
train_loss = 0.0
valid_loss = 0.0
train_acc_list = []
valid_acc_list = []
train_loss_list = []
valid_loss_list = []
check_point_list = []
global_step = 0
global_step_list = []
# set progress_bar
progress_bar = tqdm(range(eval_every[0]), leave=True)
# training loop
model.train()
for epoch in range(num_epochs):
eval_time = 0
train_data_size = 0
for ((text, text_len), labels), _ in train_loader:
labels = labels.type(torch.LongTensor)
labels = labels.to(device)
text = text.to(device)
text_len = text_len.to('cpu')
outputs = model(text, text_len)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update metrics values
_, predicted_label = torch.max(outputs.data, 1)
train_data_size += labels.size(0)
train_correct += (predicted_label == labels).sum().item()
train_loss += loss.item() # 累加loss值
global_step += 1
progress_bar.update(1)
# evaluation step
if (len(global_step_list) == 0 and global_step == eval_every[0]) or \
(len(global_step_list) > 0 and global_step - global_step_list[-1] == eval_every[eval_time]):
progress_bar.close()
model.eval()
with torch.no_grad():
# validation loop
valid_data_size = 0
for ((text, text_len), labels), _ in valid_loader:
labels = labels.type(torch.LongTensor)
labels = labels.to(device)
text = text.to(device)
text_len = text_len.to('cpu')
outputs = model(text, text_len)
loss = criterion(outputs, labels)
_, predicted_label = torch.max(outputs.data, 1)
valid_data_size += labels.size(0)
valid_correct += (predicted_label == labels).sum().item()
valid_loss += loss.item()
# evaluation metrics value
train_acc = train_correct / train_data_size
valid_acc = valid_correct / valid_data_size
average_train_loss = train_loss / eval_every[eval_time]
average_valid_loss = valid_loss / len(valid_loader)
train_acc_list.append(train_acc)
valid_acc_list.append(valid_acc)
train_loss_list.append(average_train_loss)
valid_loss_list.append(average_valid_loss)
check_point_list.append(epoch + (eval_time + 1) / eval_time_in_epoch)
global_step_list.append(global_step)
# resetting metrics value
train_correct = 0
valid_correct = 0
train_loss = 0.0
valid_loss = 0.0
train_data_size = 0
model.train()
# print progress
print('Epoch [{}/{}], Step [{}/{}], Train Acc: {:.4f}, Valid Acc: {:.4f}, Train Loss: {:.4f}, Valid Loss: {:.4f}'
.format(epoch + 1, num_epochs, global_step, num_epochs * len(train_loader),
train_acc, valid_acc,
average_train_loss, average_valid_loss))
# save model
if best_valid_acc < valid_acc:
best_valid_acc = valid_acc
save_model(file_path + '/model.pt', model, best_valid_acc)
# reset progress_bar
if global_step < num_epochs * len(train_loader):
progress_bar = tqdm(range(eval_every[(eval_time + 1) % eval_time_in_epoch]), leave=True)
eval_time += 1
save_metrics(file_path + '/accuracy_metrics.pt', train_acc_list, valid_acc_list, check_point_list)
save_metrics(file_path + '/loss_metrics.pt', train_loss_list, valid_loss_list, check_point_list)
max_acc_index = max(range(len(valid_acc_list)), key=valid_acc_list.__getitem__)
return train_acc_list[max_acc_index], valid_acc_list[max_acc_index],\
train_loss_list[max_acc_index], valid_loss_list[max_acc_index]
class EmotionClient(fl.client.NumPyClient):
def get_parameters(self, config):
return [val.cpu().numpy() for _, val in model.state_dict().items()]
def set_parameters(self, parameters, config):
params_dict = zip(model.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.tensor(v) for k, v in params_dict})
model.load_state_dict(state_dict, strict=True)
def fit(self, parameters, config):
self.set_parameters(parameters, config)
train_iter = load_data(local_config['train_path'],
local_config['text_field_path'],
local_config['label_field_path'],
config['batch_size'], True)
valid_iter = load_data(local_config['valid_path'],
local_config['text_field_path'],
local_config['label_field_path'],
config['batch_size'])
optimizer = AdamW(model.parameters(), lr=config['learning_rate'])
print(f"Start round {config['current_round']} training!")
train_acc, valid_acc, train_loss, valid_loss = train(
config['current_round'], model, optimizer,
train_loader=train_iter,
valid_loader=valid_iter,
num_epochs=config['local_epochs'],
eval_time_in_epoch=config['eval_time'],
file_path=local_config['saving_directory']
)
print(f"Finished round {config['current_round']} training!")
results = {
'train_accuracy': float(train_acc),
'valid_accuracy': float(valid_acc),
'train_loss': float(train_loss),
'valid_loss': float(valid_loss)
}
return self.get_parameters(config), len(train_iter), results
def evaluate(self, parameters, config):
self.set_parameters(parameters, config)
test_iter = load_data(local_config['test_path'],
local_config['text_field_path'],
local_config['label_field_path'],
config['batch_size'])
accuracy, loss = test(model, test_iter)
results = {
'accuracy': float(accuracy),
'loss': float(loss)
}
return float(accuracy), len(test_iter), results
def main(args):
global model, local_config
model = MyLSTM().to(device)
local_config = {
'train_path': args.train_path,
'valid_path': args.valid_path,
'test_path': args.test_path,
'saving_directory': args.saving_directory,
'text_field_path': args.text_field_path,
'label_field_path': args.label_field_path
}
fl.client.start_numpy_client(server_address="[::1]:9999", client=EmotionClient())
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args)