-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_centralized_model.py
197 lines (170 loc) · 8.72 KB
/
train_centralized_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.data import TabularDataset, BucketIterator
import argparse
from tqdm.auto import tqdm
from Mylstm import MyLSTM
from save_load_util import save_model, save_metrics, load_model
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def get_parser():
parser = argparse.ArgumentParser(description='train lstm model by training and validation dataset')
parser.add_argument('train_path', type=str,
help='specify the path of the training dataset file')
parser.add_argument('valid_path', type=str,
help='specify the path of the validation dataset file')
parser.add_argument('-mp', '--initial-model-path', type=str, default=None,
help='specify the path of initial model saving file. if no specify, use torch default model.')
parser.add_argument('-s', '--saving-directory', type=str, default='.',
help='specify working directory to save model and metrics files, default current')
parser.add_argument('-tf', '--text-field-path', type=str, default='./field/text_field.pth',
help='specify the path of the text field saving file')
parser.add_argument('-lf', '--label-field-path', type=str, default='./field/label_field.pth',
help='specify the path of the label field saving file')
parser.add_argument('-e', '--epoch', type=int, default=7,
help='the number times that the learning algorithm work through the entire training dataset, default 5')
parser.add_argument('-et', '--eval-time', type=int, default=2,
help='the number evaluate times in a epoch, default 2')
parser.add_argument('-b', '--batch-size', type=int, default=32,
help='batch size of training loader, default 32')
parser.add_argument('-l', '--learning-rate', type=float, default=0.001,
help='learning rate, default 0.001')
parser.add_argument('-ba', '--best-valid-accuracy', type=float, default=0.0,
help='specify the minimum validation accuracy, default 0.0')
return parser
def load_data(data_file_path, text_field_path, label_field_path,
batch_size, is_shuffle=False):
''' load .csv file data and return dataloader '''
text_field = torch.load(text_field_path)
label_field = torch.load(label_field_path)
fields = [('text', text_field), ('label', label_field)]
data = TabularDataset(path=data_file_path, format='CSV',
fields=fields, skip_header=True)
data_iter = BucketIterator(data, batch_size=batch_size,
sort_key=lambda x: len(x.text), shuffle=is_shuffle,
device=device, sort=True, sort_within_batch=True)
return data_iter
# train
def train(model, optimizer, train_loader, valid_loader,
num_epochs, eval_time_in_epoch, file_path,
criterion = nn.CrossEntropyLoss(),
best_valid_acc = 0.0):
# eval every N step
eval_every = []
for i in range(eval_time_in_epoch):
if i == eval_time_in_epoch - 1:
eval_every.append(len(train_loader) // eval_time_in_epoch +
len(train_loader) % eval_time_in_epoch)
else:
eval_every.append(len(train_loader) // eval_time_in_epoch)
# initialize metrics values
train_correct = 0
valid_correct = 0
train_loss = 0.0
valid_loss = 0.0
train_acc_list = []
valid_acc_list = []
train_loss_list = []
valid_loss_list = []
check_point_list = []
global_step = 0
global_step_list = []
# set progress_bar
progress_bar = tqdm(range(eval_every[0]), leave=True)
# training loop
model.train()
for epoch in range(num_epochs):
eval_time = 0
train_data_size = 0
for ((text, text_len), labels), _ in train_loader:
labels = labels.type(torch.LongTensor)
labels = labels.to(device)
text = text.to(device)
text_len = text_len.to('cpu')
outputs = model(text, text_len)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update metrics values
_, predicted_label = torch.max(outputs.data, 1)
train_data_size += labels.size(0)
train_correct += (predicted_label == labels).sum().item()
train_loss += loss.item() # 累加loss值
global_step += 1
progress_bar.update(1)
# evaluation step
if (len(global_step_list) == 0 and global_step == eval_every[0]) or \
(len(global_step_list) > 0 and global_step - global_step_list[-1] == eval_every[eval_time]):
progress_bar.close()
# validation loop
model.eval()
with torch.no_grad():
valid_data_size = 0
for ((text, text_len), labels), _ in tqdm(valid_loader):
labels = labels.type(torch.LongTensor)
labels = labels.to(device)
text = text.to(device)
text_len = text_len.to('cpu')
outputs = model(text, text_len)
loss = criterion(outputs, labels)
_, predicted_label = torch.max(outputs.data, 1)
valid_data_size += labels.size(0)
valid_correct += (predicted_label == labels).sum().item()
valid_loss += loss.item()
# evaluation metrics value
train_acc = train_correct / train_data_size
valid_acc = valid_correct / valid_data_size
average_train_loss = train_loss / eval_every[eval_time]
average_valid_loss = valid_loss / len(valid_loader)
train_acc_list.append(train_acc)
valid_acc_list.append(valid_acc)
train_loss_list.append(average_train_loss)
valid_loss_list.append(average_valid_loss)
check_point_list.append(epoch + (eval_time + 1) / eval_time_in_epoch)
global_step_list.append(global_step)
# resetting metrics value
train_correct = 0
valid_correct = 0
train_loss = 0.0
valid_loss = 0.0
train_data_size = 0
model.train()
# print progress
print('Epoch [{}/{}], Step [{}/{}], Train Acc: {:.4f}, Valid Acc: {:.4f}, Train Loss: {:.4f}, Valid Loss: {:.4f}'
.format(epoch + 1, num_epochs, global_step, num_epochs * len(train_loader),
train_acc, valid_acc,
average_train_loss, average_valid_loss))
# save model
if best_valid_acc < valid_acc:
best_valid_acc = valid_acc
save_model(file_path + '/model.pt', model, best_valid_acc)
# reset progress_bar
if global_step < num_epochs * len(train_loader):
progress_bar = tqdm(range(eval_every[(eval_time + 1) % eval_time_in_epoch]), leave=True)
eval_time += 1
save_metrics(file_path + '/accuracy_metrics.pt', train_acc_list, valid_acc_list, check_point_list)
save_metrics(file_path + '/loss_metrics.pt', train_loss_list, valid_loss_list, check_point_list)
def main(args):
model = MyLSTM().to(device)
if args.initial_model_path:
load_model(args.initial_model_path, model)
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
train_iter = load_data(args.train_path,
args.text_field_path,
args.label_field_path,
args.batch_size, True)
valid_iter = load_data(args.valid_path,
args.text_field_path,
args.label_field_path,
args.batch_size)
print('Start Training!')
train(model, optimizer, train_loader=train_iter, valid_loader=valid_iter,
num_epochs=args.epoch, eval_time_in_epoch=args.eval_time,
file_path=args.saving_directory, best_valid_acc=args.best_valid_accuracy)
print('Finished Training!')
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args)