-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_centralized_model.py
198 lines (169 loc) · 8.64 KB
/
train_centralized_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
from torch.optim import AdamW
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from datasets import Dataset, load_metric
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
get_scheduler
)
import torch
import argparse
import os
from save_load_util import save_metrics
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def get_parser():
parser = argparse.ArgumentParser(description='train bert model by training dataset')
parser.add_argument('train_path', type=str,
help='specify the path of the training dataset file')
parser.add_argument('valid_path', type=str,
help='specify the path of the validation dataset file')
parser.add_argument('-mds', '--model-saving-directory', type=str, default='./model',
help='specify working directory to save model, default ./model')
parser.add_argument('-tks', '--tokenizer-saving-directory', type=str, default='./tokenizer',
help='specify working directory to save tokenizer, default ./tokenizer')
parser.add_argument('-mts', '--metrics-saving-directory', type=str, default='.',
help='specify working directory to save metrics files, default current')
parser.add_argument('-e', '--epoch', type=int, default=5,
help='the number times that the learning algorithm work through the entire training dataset, default 5')
parser.add_argument('-et', '--eval-time', type=int, default=2,
help='the number evaluate times in a epoch, default 2')
parser.add_argument('-b', '--batch-size', type=int, default=4,
help='batch size of training loader, default 4')
parser.add_argument('-l', '--learning-rate', type=float, default=0.00005,
help='learning rate, default 0.00005')
parser.add_argument('-ba', '--best-valid-accuracy', type=float, default=0.0,
help='specify the minimum validation accuracy, default 0.0')
return parser
def load_data(data_file_path, tokenizer_path, batch_size, is_shuffle=False):
if os.path.exists(tokenizer_path):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
else:
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
tokenizer.save_pretrained(tokenizer_path)
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
dataset = Dataset.from_csv(data_file_path)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
tokenized_dataset = tokenized_dataset.remove_columns(["text"])
tokenized_dataset = tokenized_dataset.rename_column("label", "labels")
tokenized_dataset.set_format("torch")
return DataLoader(tokenized_dataset, shuffle=is_shuffle, batch_size=batch_size)
def train(model, optimizer, train_loader, valid_loader, num_epochs,
eval_time_in_epoch, model_save_path, metrics_save_path,
best_valid_acc = 0.0):
# eval every N step
eval_every = []
for i in range(eval_time_in_epoch):
if i == eval_time_in_epoch - 1:
eval_every.append(len(train_loader) // eval_time_in_epoch +
len(train_loader) % eval_time_in_epoch)
else:
eval_every.append(len(train_loader) // eval_time_in_epoch)
# initialize metrics values
train_loss = 0.0
valid_loss = 0.0
train_acc_list = []
valid_acc_list = []
train_loss_list = []
valid_loss_list = []
check_point_list = []
global_step = 0
global_step_list = []
# set progress bar
progress_bar = tqdm(range(eval_every[0]), leave=True)
# training loop
metric = load_metric("accuracy")
model.train()
for epoch in range(num_epochs):
eval_time = 0
for batch in train_loader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
# update metrics values
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
train_loss += loss.item()
global_step += 1
progress_bar.update(1)
# evaluation step
if (len(global_step_list) == 0 and global_step == eval_every[0]) or \
(len(global_step_list) > 0 and global_step - global_step_list[-1] == eval_every[eval_time]):
progress_bar.close()
train_acc = metric.compute()['accuracy']
# validation loop
model.eval()
with torch.no_grad():
for batch in tqdm(valid_loader):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss = outputs.loss
valid_loss += loss.item()
# evaluation metrics value
valid_acc = metric.compute()['accuracy']
average_train_loss = train_loss / eval_every[eval_time]
average_valid_loss = valid_loss / len(valid_loader)
train_acc_list.append(train_acc)
valid_acc_list.append(valid_acc)
train_loss_list.append(average_train_loss)
valid_loss_list.append(average_valid_loss)
check_point_list.append(epoch + (eval_time + 1) / eval_time_in_epoch)
global_step_list.append(global_step)
# resetting running loss values
train_loss = 0.0
valid_loss = 0.0
model.train()
# print progress
print('Epoch [{}/{}], Step [{}/{}], Train Acc: {:.4f}, Valid Acc: {:.4f}, Train Loss: {:.4f}, Valid Loss: {:.4f}'
.format(epoch + 1, num_epochs, global_step, num_epochs * len(train_loader),
train_acc, valid_acc,
average_train_loss, average_valid_loss))
# save model
if best_valid_acc < valid_acc:
best_valid_acc = valid_acc
model.save_pretrained(model_save_path)
print(f'Model saved to ==> {model_save_path}')
# reset progress_bar
if global_step < num_epochs * len(train_loader):
progress_bar = tqdm(range(eval_every[(eval_time + 1) % eval_time_in_epoch]), leave=True)
eval_time += 1
save_metrics(metrics_save_path + '/accuracy_metrics.pt', train_acc_list, valid_acc_list, check_point_list)
save_metrics(metrics_save_path + '/loss_metrics.pt', train_loss_list, valid_loss_list, check_point_list)
def main(args):
if not os.path.exists(args.model_saving_directory):
model_name_or_path = "distilbert-base-uncased"
else:
model_name_or_path = args.model_saving_directory
model = AutoModelForSequenceClassification.from_pretrained(
model_name_or_path,
num_labels=6,
id2label={0:'sadness', 1:'joy', 2:'love', 3:'anger', 4:'fear', 5:'surprise'},
label2id={'sadness':0, 'joy':1, 'love':2, 'anger':3, 'fear':4, 'surprise':5}
).to(device)
optimizer = AdamW(model.parameters(), lr=args.learning_rate)
train_dataloader = load_data(args.train_path,
args.tokenizer_saving_directory,
args.batch_size, True)
valid_dataloader = load_data(args.valid_path,
args.tokenizer_saving_directory,
args.batch_size)
print('Start Training!')
train(model, optimizer, train_loader=train_dataloader, valid_loader=valid_dataloader,
model_save_path=args.model_saving_directory,
metrics_save_path=args.metrics_saving_directory,
num_epochs=args.epoch, eval_time_in_epoch=args.eval_time,
best_valid_acc=args.best_valid_accuracy)
print('Finished Training!')
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args)