-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurgery_scheduler.py
244 lines (201 loc) · 8.78 KB
/
surgery_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.metrics import classification_report, mean_absolute_error, mean_squared_error
from sklearn.preprocessing import StandardScaler
from datetime import datetime
import matplotlib.pyplot as plt
# Load the dataset
df = pd.read_csv('/Users/ikymama/Desktop/UCLA Academics/Data Analytics/AI in operations/Final Project/AI scheduler/AI_Surgery_Scheduling_Dataset__1000_Cases_.csv')
# Store percentile values for risk scoring
age_percentiles = np.percentile(df['Patient Age'], [20, 40, 60, 80])
bmi_percentiles = np.percentile(df['BMI'], [20, 40, 60, 80])
def get_risk_score(value, percentiles):
"""Calculate risk score based on percentile ranges"""
if value <= percentiles[0]:
return 1
elif value <= percentiles[1]:
return 2
elif value <= percentiles[2]:
return 3
elif value <= percentiles[3]:
return 4
else:
return 5
# Feature Engineering
def preprocess_data(df, is_training=True):
"""
Preprocess the data for either training or prediction.
Args:
df: DataFrame to process
is_training: Boolean indicating if this is training data (True) or prediction data (False)
"""
# Convert datetime columns
df['Scheduled Start'] = pd.to_datetime(df['Scheduled Start'])
if is_training:
df['Actual Start'] = pd.to_datetime(df['Actual Start'])
# Calculate delays for training data
df['Start Delay (min)'] = (df['Actual Start'] - df['Scheduled Start']).dt.total_seconds() / 60
df['Delay Flag'] = (df['Start Delay (min)'] > 10).astype(int)
# Extract time features
df['Hour'] = df['Scheduled Start'].dt.hour
df['Is_Morning'] = (df['Hour'] < 12).astype(int)
# Create complexity score based on multiple factors
df['Complexity_Score'] = (
df['Pre-op Prep Time (min)'] +
df['Anesthesia Time (min)'] +
df['Positioning Time (min)']
) / 3
# Create risk score based on patient factors
if is_training:
df['Age_Risk'] = pd.qcut(df['Patient Age'], q=5, labels=[1,2,3,4,5]).astype(int)
df['BMI_Risk'] = pd.qcut(df['BMI'], q=5, labels=[1,2,3,4,5]).astype(int)
else:
# For prediction, use pre-computed percentiles
df['Age_Risk'] = df['Patient Age'].apply(lambda x: get_risk_score(x, age_percentiles))
df['BMI_Risk'] = df['BMI'].apply(lambda x: get_risk_score(x, bmi_percentiles))
df['Risk_Score'] = df['Age_Risk'] + df['BMI_Risk']
# Convert categorical variables
df['Instrument Ready'] = (df['Instrument Ready (Y/N)'] == 'Y').astype(int)
df['PACU Bed Ready'] = (df['PACU Bed Ready (Y/N)'] == 'Y').astype(int)
if is_training:
df['Readmission'] = (df['Readmission (Y/N)'] == 'Y').astype(int)
# Create dummy variables for categorical columns
categorical_cols = ['Surgery Type', 'Surgeon', 'Day of Week', 'Anesthesiologist', 'Comorbidities', 'Nurse']
df = pd.get_dummies(df, columns=categorical_cols)
return df
# Preprocess the training data
df_processed = preprocess_data(df, is_training=True)
# Define features and targets
feature_cols = [
# Patient characteristics
'Patient Age', 'BMI', 'Age_Risk', 'BMI_Risk', 'Risk_Score',
# Time-related features
'Hour', 'Is_Morning',
# Preparation times
'Pre-op Prep Time (min)', 'Transfer to OR Time (min)',
'Anesthesia Time (min)', 'Positioning Time (min)',
'Complexity_Score',
# Resource readiness
'Instrument Ready', 'PACU Bed Ready',
# Keep all the dummy variables for categorical columns
*[col for col in df_processed.columns if any(x in col for x in [
'Surgery Type_', 'Surgeon_', 'Day of Week_',
'Anesthesiologist_', 'Comorbidities_', 'Nurse_'
])]
]
X = df_processed[feature_cols]
y_delay = df_processed['Delay Flag']
y_time = df_processed['Total OR Time (min)']
# Split data
X_train, X_test, y_delay_train, y_delay_test = train_test_split(X, y_delay, test_size=0.2, random_state=42)
_, _, y_time_train, y_time_test = train_test_split(X, y_time, test_size=0.2, random_state=42)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train models with better parameters
delay_model = RandomForestClassifier(
n_estimators=100,
max_depth=10,
min_samples_split=5,
min_samples_leaf=2,
random_state=42
)
duration_model = RandomForestRegressor(
n_estimators=100,
max_depth=15,
min_samples_split=5,
min_samples_leaf=2,
random_state=42
)
# Train models
delay_model.fit(X_train_scaled, y_delay_train)
duration_model.fit(X_train_scaled, y_time_train)
# Evaluate models
print("\nDelay Prediction Model Performance:")
print(classification_report(y_delay_test, delay_model.predict(X_test_scaled)))
print("\nSurgery Duration Model Performance:")
mae = mean_absolute_error(y_time_test, duration_model.predict(X_test_scaled))
rmse = np.sqrt(mean_squared_error(y_time_test, duration_model.predict(X_test_scaled)))
print(f'Mean Absolute Error: {mae:.2f} minutes')
print(f'Root Mean Squared Error: {rmse:.2f} minutes')
# Cross-validation scores
delay_cv_scores = cross_val_score(delay_model, X_train_scaled, y_delay_train, cv=5)
duration_cv_scores = cross_val_score(duration_model, X_train_scaled, y_time_train, cv=5)
print("\nCross-validation Scores:")
print(f"Delay Model: {delay_cv_scores.mean():.3f} (+/- {delay_cv_scores.std() * 2:.3f})")
print(f"Duration Model: {duration_cv_scores.mean():.3f} (+/- {duration_cv_scores.std() * 2:.3f})")
# Feature importance analysis
def plot_feature_importance(model, feature_names, title):
importances = model.feature_importances_
indices = np.argsort(importances)[::-1]
plt.figure(figsize=(10, 6))
plt.title(f"Top 15 Most Important Features for {title}")
plt.bar(range(15), importances[indices[:15]])
plt.xticks(range(15), [feature_names[i] for i in indices[:15]], rotation=45, ha='right')
plt.tight_layout()
plt.show()
plot_feature_importance(delay_model, feature_cols, "Delay Prediction")
plot_feature_importance(duration_model, feature_cols, "Duration Prediction")
def predict_surgery(surgery_data):
"""
Predict surgery delay and duration for new cases.
Args:
surgery_data (dict): Dictionary containing surgery information
Returns:
dict: Predictions including delay probability and estimated duration
"""
# Create a DataFrame with the new surgery data
df_new = pd.DataFrame([surgery_data])
# Set a default duration based on surgery type and complexity if not predicted
base_duration = (df_new['Pre-op Prep Time (min)'].iloc[0] +
df_new['Transfer to OR Time (min)'].iloc[0] +
df_new['Anesthesia Time (min)'].iloc[0] +
df_new['Positioning Time (min)'].iloc[0])
# Add dummy Actual Start if not provided (for prediction only)
if 'Actual Start' not in df_new.columns:
df_new['Actual Start'] = df_new['Scheduled Start']
# Preprocess input data
df_new_processed = preprocess_data(df_new, is_training=False)
# Ensure all feature columns exist
for col in feature_cols:
if col not in df_new_processed.columns:
df_new_processed[col] = 0
# Select features and scale
X_new = df_new_processed[feature_cols]
X_new_scaled = scaler.transform(X_new)
# Make predictions
delay_prob = delay_model.predict_proba(X_new_scaled)[0][1]
duration_pred = max(base_duration, duration_model.predict(X_new_scaled)[0])
return {
'Delay_Probability': round(delay_prob, 2),
'Predicted_Delay': 'High Risk' if delay_prob > 0.5 else 'Low Risk',
'Predicted_Duration': round(duration_pred, 1),
'Duration_Range': f"{round(duration_pred - rmse, 1)} - {round(duration_pred + rmse, 1)}"
}
# Example usage
example_surgery = {
'Patient Age': 65,
'BMI': 28.5,
'Surgery Type': 'Hip Replacement',
'Surgeon': 'Dr. Smith',
'Anesthesiologist': 'Dr. Brown',
'Nurse': 'Nurse A',
'Day of Week': 'Monday',
'Hour': 9,
'Pre-op Prep Time (min)': 45,
'Transfer to OR Time (min)': 10,
'Anesthesia Time (min)': 25,
'Positioning Time (min)': 20,
'Comorbidities': 'Hypertension',
'Instrument Ready (Y/N)': 'Y',
'PACU Bed Ready (Y/N)': 'Y',
'Scheduled Start': '2025-03-10 09:00:00'
}
prediction = predict_surgery(example_surgery)
print("\nExample Prediction:")
print(f"Delay Risk: {prediction['Predicted_Delay']} (Probability: {prediction['Delay_Probability']})")
print(f"Estimated Duration: {prediction['Predicted_Duration']} minutes")
print(f"Duration Range: {prediction['Duration_Range']} minutes")