-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProjectWrapper.m
400 lines (340 loc) · 13.6 KB
/
ProjectWrapper.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
%% ProjectWrapper
%% Resetter
% Clears workspace of variables and figures on start
beep off
clearvars
close ALL
%% Settings - Run on launch
% Constants are defined through a class for easy access
settings = Settings;
%% File loading
% This section does...
sourceDir = "DataSets/";
sourceFiles = ["Stockholm Bromma smhi-opendata 20200404.csv", ...
"Kiruna Flygplats smhi-opendata 20200404.csv", ...
"Falsterbo smhi-opendata 20200404.csv"];
if (~exist(sourceDir, 'dir'))
fprintf("DataSets dir not found!\n\n")
return
end
Sets(1:length(sourceFiles)) = WeatherSet;
for k = 1 : length(Sets) % Iterate to load all chosen data sets
Sets(1,k).FileName = sourceFiles(k);
Sets(1,k).DataSet = readtable(sourceDir + sourceFiles(k));
Sets(1,k).DataSet.Properties.VariableNames = {'Date', 'Time', 'Degrees', 'Quality'};
Sets(1,k).DataSet.Date.Format = 'default';
Sets(1,k).DataSet.Date = Sets(1,k).DataSet.Date + Sets(1,k).DataSet.Time;
Sets(1,k).DataSet.Time = []; % Remove now unneeded time column
Sets(1,k).DataSet = Sets(1,k).DataSet(Sets(1,k).DataSet.Date >= ...
datetime(2005,01,01),:);
Sets(1,k).Clean = timetable(Sets(1,k).DataSet.Date, ...
Sets(1,k).DataSet.Degrees, Sets(1,k).DataSet.Quality);
Sets(1,k).Clean.Properties.VariableNames = {'Degrees', 'Quality'};
Sets(1,k).ShortName = extractBefore(Sets(1,k).FileName, ' smhi-');
end
clear sourceDir sourceFiles k; % Remove variables not to be used again
%% Data parsing
% Transform the data and calculate daily average temperatures
for k = 1 : length(Sets) % Iterate to parse all chosen data sets
Sets(1,k).InSample = datetime(2008,01,01):datetime(2014,12,31);
Sets(1,k).OutOfSample = datetime(2015,01,01):datetime(2019,12,31);
Sets(1,k).InSample(month(Sets(1,k).InSample) == 2 ...
& day(Sets(1,k).InSample) == 29) ...
= []; % Clean leap days
Sets(1,k).OutOfSample(month(Sets(1,k).OutOfSample) == 2 ...
& day(Sets(1,k).OutOfSample) == 29) ...
= []; % Clean leap days
Sets(1,k).Clean = DailyAverage(Sets(1,k).Clean(:,1), settings.avgType);
Sets(1,k).Clean(month(Sets(1,k).Clean.Time) == 2 ...
& day(Sets(1,k).Clean.Time) == 29,:) ...
= [];
end
% Check for nans
for k = 1 : length(Sets)
n = sum(isnan(Sets(1,k).Clean.Degrees));
if n ~= 0
fprintf(2, sprintf('Set %s contains %d NaN values.\n', ...
Sets(1,k).ShortName, n))
end
end
clear k n
%% Deseasoning
% Remove the seasonal component of the temperature
seasonFunction = @(a, t) a(1) + a(2) * t + ...
a(3) * sin(2 * pi / 365 * (t - a(4)));
guess = [8, 0.0005, 5, 100];
for k = 1 : length(Sets) % Iterate to deseason all chosen data sets
[Sets(1,k).Season_Theta, Sets(1,k).Season_FVal] = ...
Deseason(transpose(Sets(1,k).Clean.Degrees(Sets(1,k).InSample)), ...
seasonFunction, length(Sets(1,k).InSample), guess, ...
settings.fminconOptions);
end
for k = 1 : length(Sets)
Sets(1,k).Deseasoned = Sets(1,k).Clean(Sets(1,k).InSample,:);
Sets(1,k).Deseasoned.Degrees = Sets(1,k).Deseasoned.Degrees - ...
transpose(seasonFunction(Sets(1,k).Season_Theta, 0:length(Sets(1,k).InSample)-1));
end
clear k guess
%% Generation of DAT and Deseasoned plots
% Allows for specific settings for the plots.
% Used to generate figures for the written thesis report.
close ALL
% Settings for figures
showFigures = false;
saveFigures = false;
showSeason = true;
showTref = false;
showLinTrend = true;
setPeriod = "In"; % Alternatives: "In", "InOut"
status = zeros(1,length(Sets));
for k = 1 : length(Sets) % Iterate to generate DAT figures
[status(k)] = GenerateDATPlot(Sets(1,k), seasonFunction, Sets(1,k).Season_Theta, ...
showFigures, saveFigures, showSeason, showTref, showLinTrend, ...
setPeriod);
%fprintf(sprintf('DAT plot status: %d.\n', status(1,k)))
end
for k = 1 : length(Sets) % Iterate to generate deseasoned figures
[status(k)] = GenerateDeseasonedPlots(Sets(1,k), ...
showFigures, saveFigures);
%fprintf(sprintf('Deseasoned plot status: %d.\n', status(1,k)))
end
for k = 1 : length(Sets) % Iterate to generate skewness and kurtosis
Sets(1,k).Skewness = skewness(Sets(1,k).Deseasoned.Degrees);
Sets(1,k).Kurtosis = kurtosis(Sets(1,k).Deseasoned.Degrees);
fprintf(sprintf('Set %i ''%s'', skewness: %d, kurtosis: %d.\n', k, Sets(1,k).ShortName, Sets(1,k).Skewness, Sets(1,k).Kurtosis));
end
clear k showFigures saveFigures showSeason showTref showLinTrend ...
setPeriod status
%% Parameter Estimation
% Define GH probability density function
f_GH = @(x, lambda, alpha, beta, delta, mu) ...
sqrt(alpha^2 - beta^2)^(lambda) ... % TODO: SKA DET VARA SQRT HÄR?
/ (sqrt(2*pi) * delta^lambda * alpha^(lambda - 1/2) * besselk(lambda, delta * sqrt(alpha^2 - beta^2))) ...
* (sqrt(delta^2 + (x - mu)^2))^(lambda - 1/2) ...
* besselk(lambda - 1/2, alpha * sqrt(delta^2 + (x - mu)^2)) * exp(beta * (x - mu));
f_HYP = @(x, alpha, beta, delta, mu) f_GH(x, 1, alpha, beta, delta, mu);
f_NIG = @(x, alpha, beta, delta, mu) f_GH(x, -1/2, alpha, beta, delta, mu);
% Alternative VG pdf
f_VG = @(x, lambda, alpha, beta, mu) ...
sqrt(alpha^2 - beta^2)^(2 * lambda) ...
* abs(x - mu)^(lambda - 1/2) * besselk(lambda - 1/2, alpha * abs(x - mu)) ...
/ (sqrt(pi) * gamma(lambda) * (2 * alpha)^(lambda - 1/2)) ...
* exp(beta * (x - mu));
%% Maximum likelihood estimation of
% lambda, alpha, beta, delta, mu
guess.GH = [1, 1.7178, 0.3921, 1.6783, 0.6179]';
guess.HYP = [(1), 1.7178, 0.3921, 1.6783, 0.6179]';
guess.NIG = [(-1/2), 1.7178, 0.3921, 1.6783, 0.6179]';
guess.VG = [10, 2, -0.5, 5]';
for k = 1 : length(Sets)
%A, b, Aeq, beq, lb, ub, nonlcon, options
[Sets(1, k).ML_Theta.GH, Sets(1, k).ML_FVal.GH] = fmincon(@(x) ...
-log_likelihood_f_GH(Sets(1, k).Deseasoned.Degrees, x(1), x(2), x(3), x(4), x(5)), ...
guess.GH, ...
[0, -1, -1, 0 0; 0, -1, 1, 0, 0], [0;0], [], [], [-inf -inf -inf 0 -inf], [], [], settings.fminconOptions);
Sets(1, k).ML_FVal.GH = -Sets(1, k).ML_FVal.GH; % Correct FVal to not be minimized
[Sets(1, k).ML_Theta.HYP, Sets(1, k).ML_FVal.HYP] = fmincon(@(x) ...
-log_likelihood_f_GH(Sets(1, k).Deseasoned.Degrees, x(1), x(2), x(3), x(4), x(5)), ...
guess.HYP, ...
[0, -1, -1, 0 0; 0, -1, 1, 0, 0], [0;0], [], [], [1 -inf -inf -inf -inf], [1 inf inf inf inf], [], settings.fminconOptions);
Sets(1, k).ML_FVal.HYP = -Sets(1, k).ML_FVal.HYP;
[Sets(1, k).ML_Theta.NIG, Sets(1, k).ML_FVal.NIG] = fmincon(@(x) ...
-log_likelihood_f_GH(Sets(1, k).Deseasoned.Degrees, x(1), x(2), x(3), x(4), x(5)), ...
guess.NIG, ...
[0, -1, -1, 0 0; 0, -1, 1, 0, 0], [0;0], [], [], [-1/2 -inf -inf -inf -inf], [-1/2 inf inf inf inf], [], settings.fminconOptions);
Sets(1, k).ML_FVal.NIG = -Sets(1, k).ML_FVal.NIG;
[Sets(1, k).ML_Theta.VG, Sets(1, k).ML_FVal.VG] = fmincon(@(x) ...
-log_likelihood_f_VG(Sets(1, k).Deseasoned.Degrees, x(1), x(2), x(3), x(4)), ...
guess.VG, ...
[0, -1, -1, 0; 0, -1, 1, 0], [0;0], [], [], [0 0 -inf -inf], [], [], settings.fminconOptions);
Sets(1, k).ML_FVal.VG = -Sets(1, k).ML_FVal.VG;
[Sets(1, k).ML_Theta.N, Sets(1, k).ML_FVal.N] = fmincon(@(x) ...
-sum(log(normpdf(Sets(1, k).Deseasoned.Degrees, x(1), x(2)))), ...
[0 1], [], [], [], [], [], [], [], settings.fminconOptions);
Sets(1, k).ML_FVal.N = -Sets(1, k).ML_FVal.N;
end
%%
clearvars KS AD GH HYP NIG VG pdf_GH pdf_HYP pdf_NIG pdf_VG cdf_GH cdf_HYP cdf_NIG cdf_VG F
for k = 1 : length(Sets)
%pdf_series = zeros(length(Sets(1,1).Deseasoned.Degrees),1);
%sorted_deg = sort(Sets(1,1).Deseasoned.Degrees);
GH = Sets(1,k).ML_Theta.GH;
HYP = Sets(1,k).ML_Theta.HYP;
NIG = Sets(1,k).ML_Theta.NIG;
VG = Sets(1,k).ML_Theta.VG;
r = -50:0.05:50;
cdf_GH = zeros(length(r), 1);
cdf_HYP = zeros(length(r), 1);
cdf_NIG = zeros(length(r), 1);
cdf_VG = zeros(length(r), 1);
F = zeros(length(r), 1);
for i = 1:length(r)
cdf_GH(i, 1) = integral(@(x) f_GH(x, GH(1), GH(2), GH(3), GH(4), GH(5)), min(r), r(i), 'ArrayValued', true);
cdf_HYP(i, 1) = integral(@(x) f_GH(x, HYP(1), HYP(2), HYP(3), HYP(4), HYP(5)), min(r), r(i), 'ArrayValued', true);
cdf_NIG(i, 1) = integral(@(x) f_GH(x, NIG(1), NIG(2), NIG(3), NIG(4), NIG(5)), min(r), r(i), 'ArrayValued', true);
cdf_VG(i, 1) = integral(@(x) f_VG(x, VG(1), VG(2), VG(3), VG(4)), min(r), r(i), 'ArrayValued', true);
end
sorted = sort(Sets(1,k).Deseasoned.Degrees);
for i = 1 : length(r)
F(i, 1) = 1 / length(sorted) * sum(sorted <= r(i));
end
[KS.h(1), KS.p(1), KS.ks2stat(1)] = kstest2(F, cdf_GH);
[KS.h(2), KS.p(2), KS.ks2stat(2)] = kstest2(F, cdf_HYP);
[KS.h(3), KS.p(3), KS.ks2stat(3)] = kstest2(F, cdf_NIG);
[KS.h(4), KS.p(4), KS.ks2stat(4)] = kstest2(F, cdf_VG);
[KS.h(5), KS.p(5), KS.ks2stat(5)] = kstest2(F, normcdf(r, Sets(1, k).ML_Theta.N(1), Sets(1, k).ML_Theta.N(2)));
Sets(1,k).KS = KS;
clearvars KS AD GH HYP NIG VG pdf_GH pdf_HYP pdf_NIG pdf_VG F
end
for k = 1 : length(Sets)
fprintf('The KS results of set %i are:\n', k);
disp(Sets(1, k).KS);
end
%%
Sets(1,k).EM = cell(2, 1);
%%
%
clearvars EM Pr1 Pr2 Pr1T Pr2T Theta_f p Q iter_f
close all
model = 1;
useKim = true;
if (model == 1)
% Initial parameter guesses
Theta = [0.05, 1, 0.98, 1.5, 1.4, 0.02;
0.025, 1, 0.98, 10, 1, 0.02;
0.05, 1, 0.98, 1.5, 1.4, 0.02];
Theta_Kim = [0.2, 0.1, 0.5, -15, 10, 0.5;
0.22, 0.15, 0.8, 15, 1, 0.2;
0.1, 1, 0.98, -5, 0.4, 0.02];
elseif (model == 2)
Theta = [2, 0.5, 1.5, 0.98, -5, 1.5, 0.02;
0.5, 2, 0.5, 0.98, -3, 1.4, 0.02;
1, -5, 0.5, 0.98, -20, 1.5, 0.02];
Theta_Kim = [0.8, -3, 0.5, 0.9, 0, 0.25, 0.1;
0.5, -2, 2.5, 0.9, 1, 0.5, 0.1;
-0.5, 5, 0.7, 0.9, -1.5, 0.15, 0.1];
end
if (useKim)
Theta = Theta_Kim;
end
% Best for model 1:
% p = [0.995 0.005;
% 0.3 0.7];
p = [0.95 0.05;
0.6 0.4];
% Best for model 2:
% p = [0.995 0.005;
% 0.3 0.7];
% p = [0.995 0.005;
% 0.1 0.9];
for k = 3%1:length(Sets)
deseasoned = Sets(1,k).Deseasoned.Degrees;% + Sets(1,k).Season_Theta(1) + (1 : length(Sets(1,k).Deseasoned.Degrees))' * Sets(1,k).Season_Theta(2);
[EM.Pr1, EM.Pr2, EM.Pr1T, EM.Pr2T, EM.Theta_f, EM.p, EM.Q, EM.iter_f] = ...
EM( deseasoned, ...
Theta(k,:), ...
p, ...
model, ...
500, ...
true, ...
useKim);
Sets(1,k).EM{model} = EM; clearvars EM
GenerateStatePlot( ...
Sets(1,k).Deseasoned.Degrees, ...
Sets(1,k).EM{model}.Pr1T', ...
Sets(1,k).EM{model}.Pr2T', ...
0.8);
%figure();
%plot(Sets(1,k).EM.Q);
fprintf('Finished at iteration: %i, with Q value: %.1f.\n', ...
Sets(1,k).EM{model}.iter_f, ...
Sets(1,k).EM{model}.Q(end));
fprintf('Optimal parameter set is:');
disp(Sets(1,k).EM{model}.Theta_f(end,:));
fprintf("P matrix is:\n");
disp(Sets(1,k).EM{model}.p);
clearvars deseasoned
end
% Clear temp vars
%% Simulate the MRS/HMM
close all
[series, states] = SimulateHMM([0.7895 0.2105], [0.92 0.08; 0.30 0.70], [0.01 0.10], [0.025 0.25], 1, 250, 1)
GenerateStatePlot( ...
series, ...
1 - states, ...
states, ...
0.5);
%% Simulate and evaluate?
%% Gyamerah
clear G
k = 1;
G.EM = Sets(1,k).EM{1};
par = G.EM.Theta_f(end,:);
par_Levy = Sets(1,k).ML_Theta.GH;
T = 250; %1825
[G.DAT, G.states] = SimulateHMM([G.EM.Pr1T(end), G.EM.Pr2T(end)], ...
G.EM.p, par(1:3), par(4:6), 2, T, 10, par_Levy', 1);
close all
% GenerateStatePlot( ...
% G.DAT, ...
% 1 - G.states, ...
% G.states, ...
% 0.5);
figure(123);
hold on
plot(1:T, G.DAT + seasonFunction(Sets(1,k).Season_Theta, 1:T)')
plot(1:T, seasonFunction(Sets(1,k).Season_Theta, 1:T)')
hold off
%% Evarest
clear EV
k = 3;
EV.EM = Sets(1,k).EM{2};
par = EV.EM.Theta_f(end,:);
T = 1825; %1825
[EV.DAT, EV.states] = SimulateHMM([EV.EM.Pr1T(end), EV.EM.Pr2T(end)], ...
EV.EM.p, par(1:4), par(5:7), 3, T, 1000);
close all
% GenerateStatePlot( ...
% EV.DAT, ...
% 1 - EV.states, ...
% EV.states, ...
% 0.5);
figure(123);
plot(1:T, EV.DAT)
%
figure(456)
hold on
plot(1:T, EV.DAT + seasonFunction(Sets(1,k).Season_Theta, 1:T)')
plot(1:T, seasonFunction(Sets(1,k).Season_Theta, 1:T)', 'black')
hold off
xlabel('Days')
ylabel('Daily average temperature')
%%
OOS = Sets(1,3).Clean.Degrees(Sets(1,3).Clean.Time >= Sets(1,3).OutOfSample(1));
OOS = OOS(1:end-1);
figure(10)
hold on
plot(1:T, EV.DAT + seasonFunction(Sets(1,k).Season_Theta, 1:T)', 'blue')
plot(1:T, OOS, 'red')
plot(1:T, seasonFunction(Sets(1,k).Season_Theta, 1:T)', 'black')
hold off
xlabel('Days')
ylabel('Daily average temperature')
%% Calculate HDD/CDD?
OOS_PERIOD = Sets(1,3).Clean.Time(Sets(1,3).Clean.Time >= Sets(1,3).OutOfSample(1));
OOS_PERIOD = OOS_PERIOD(1:end-1);
simulated = EV.DAT + seasonFunction(Sets(1,k).Season_Theta, 1:T)';
JJA = [OOS_PERIOD(month(OOS_PERIOD) == 6); OOS_PERIOD(month(OOS_PERIOD) == 7); OOS_PERIOD(month(OOS_PERIOD) == 8)];
juneDAT = simulated(month(OOS_PERIOD) == 6,:);
julyDAT = simulated(month(OOS_PERIOD) == 7,:);
augDAT = simulated(month(OOS_PERIOD) == 8,:);
T_ref = 18;
for i = 1:1000
juneCDD{i} = juneDAT(juneDAT(:,i) >= T_ref, i) - T_ref;
julyCDD{i} = julyDAT(julyDAT(:,i) >= T_ref, i) - T_ref;
augCDD{i} = augDAT(augDAT(:,i) >= T_ref, i) - T_ref;
end
CDD = 0;
for i = 1:1000
CDD = CDD + mean(juneCDD{i}) + mean(augCDD{i}) + mean(augCDD{i});
end
CDD_Actual = sum(OOS(OOS >= T_ref) - T_ref)