Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deprecate make_positive_semidefinite in EigenConfig #86

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 2 additions & 12 deletions matrix_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,6 @@ def matrix_inverse_root(
A=A,
root=root,
epsilon=epsilon,
make_positive_semidefinite=root_inv_config.make_positive_semidefinite,
retry_double_precision=root_inv_config.retry_double_precision,
eigen_decomp_offload_device=root_inv_config.eigen_decomp_offload_device,
)
Expand Down Expand Up @@ -210,7 +209,6 @@ def _matrix_inverse_root_eigen(
A: Tensor,
root: Fraction,
epsilon: float = 0.0,
make_positive_semidefinite: bool = True,
retry_double_precision: bool = True,
eigen_decomp_offload_device: torch.device | str = "",
) -> tuple[Tensor, Tensor, Tensor]:
Expand All @@ -224,7 +222,6 @@ def _matrix_inverse_root_eigen(
A (Tensor): Square matrix of interest.
root (Fraction): Root of interest. Any rational number.
epsilon (float): Adds epsilon * I to matrix before taking matrix root. (Default: 0.0)
make_positive_semidefinite (bool): Perturbs matrix eigenvalues to ensure it is numerically positive semi-definite. (Default: True)
retry_double_precision (bool): Flag for re-trying eigendecomposition with higher precision if lower precision fails due
to CuSOLVER failure. (Default: True)
eigen_decomp_offload_device (torch.device | str): Device to offload eigen decomposition computation. If value is empty string, do not perform offloading. (Default: "")
Expand All @@ -248,14 +245,8 @@ def _matrix_inverse_root_eigen(
eigen_decomp_offload_device=eigen_decomp_offload_device,
)

lambda_min = torch.min(L)

# make eigenvalues >= 0 (if necessary)
if make_positive_semidefinite:
L += -torch.minimum(lambda_min, torch.as_tensor(0.0))

# add epsilon
L += epsilon
# make eigenvalues > 0 (if necessary)
L += -torch.minimum(torch.min(L) - epsilon, torch.as_tensor(0.0))

# compute inverse preconditioner
X = Q * L.pow(torch.as_tensor(-1.0 / root)).unsqueeze(0) @ Q.T
Expand Down Expand Up @@ -596,7 +587,6 @@ def compute_matrix_root_inverse_residuals(
X_hat.double(),
root=root,
epsilon=0.0,
make_positive_semidefinite=True,
eigen_decomp_offload_device=root_inv_config.eigen_decomp_offload_device,
)

Expand Down
2 changes: 0 additions & 2 deletions matrix_functions_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,13 +54,11 @@ class EigenConfig(RootInvConfig, EigenvalueDecompositionConfig):
retry_double_precision (bool): Whether to re-trying eigendecomposition with higher (double) precision if lower precision fails due
to CuSOLVER failure. (Default: True)
eigen_decomp_offload_device (torch.device | str): Device to offload eigen decomposition to. If value is empty string, we don't perform offloading. (Default: "")
make_positive_semidefinite (bool): Perturbs matrix eigenvalues to ensure it is numerically positive semi-definite. (Default: True)
exponent_multiplier (float): Number to be multiplied to the numerator of the inverse root, i.e., eta where the
exponent is -eta / (2 * p). (Default: 1.0)

"""

make_positive_semidefinite: bool = True
exponent_multiplier: float = 1.0


Expand Down
13 changes: 1 addition & 12 deletions tests/matrix_functions_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,6 @@ def _test_eigen_root(
self,
A: torch.Tensor,
root: int,
make_positive_semidefinite: bool,
epsilon: float,
tolerance: float,
eig_sols: Tensor,
Expand All @@ -342,7 +341,6 @@ def _test_eigen_root(
A=A,
root=Fraction(root),
epsilon=epsilon,
make_positive_semidefinite=make_positive_semidefinite,
)
abs_error = torch.dist(torch.linalg.matrix_power(X, -root), A, p=torch.inf)
A_norm = torch.linalg.norm(A, ord=torch.inf)
Expand All @@ -355,7 +353,6 @@ def _test_eigen_root_multi_dim(
A: Callable[[int], Tensor],
dims: list[int],
roots: list[int],
make_positive_semidefinite: bool,
epsilons: list[float],
tolerance: float,
eig_sols: Callable[[int], Tensor],
Expand All @@ -365,7 +362,6 @@ def _test_eigen_root_multi_dim(
self._test_eigen_root(
A(n),
root,
make_positive_semidefinite,
epsilon,
tolerance,
eig_sols(n),
Expand All @@ -376,24 +372,20 @@ def test_eigen_root_identity(self) -> None:
dims = [10, 100]
roots = [1, 2, 4, 8]
epsilons = [0.0]
make_positive_semidefinite = False

def eig_sols(n: int) -> Tensor:
return torch.ones(n)

def A(n: int) -> Tensor:
return torch.eye(n)

self._test_eigen_root_multi_dim(
A, dims, roots, make_positive_semidefinite, epsilons, tolerance, eig_sols
)
self._test_eigen_root_multi_dim(A, dims, roots, epsilons, tolerance, eig_sols)

def test_eigen_root_tridiagonal_1(self) -> None:
tolerance = 1e-4
dims = [10, 100]
roots = [1, 2, 4, 8]
epsilons = [0.0]
make_positive_semidefinite = False

for alpha, beta in itertools.product(
[0.001, 0.01, 0.1, 1.0, 10.0, 100.0], repeat=2
Expand Down Expand Up @@ -425,7 +417,6 @@ def A(n: int, alpha: float, beta: float) -> Tensor:
partial(A, alpha=alpha, beta=beta),
dims,
roots,
make_positive_semidefinite,
epsilons,
tolerance,
partial(eig_sols, alpha=alpha, beta=beta),
Expand All @@ -436,7 +427,6 @@ def test_eigen_root_tridiagonal_2(self) -> None:
dims = [10, 100]
roots = [1, 2, 4, 8]
epsilons = [0.0]
make_positive_semidefinite = False

for alpha, beta in itertools.product(
[0.001, 0.01, 0.1, 1.0, 10.0, 100.0], repeat=2
Expand Down Expand Up @@ -471,7 +461,6 @@ def A(n: int, alpha: float, beta: float) -> Tensor:
partial(A, alpha=alpha, beta=beta),
dims,
roots,
make_positive_semidefinite,
epsilons,
tolerance,
partial(eig_sols, alpha=alpha, beta=beta),
Expand Down
Loading