-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathtransforms.py
301 lines (241 loc) · 10.7 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import random
import logging
import numpy as np
import scipy
import scipy.ndimage
import scipy.interpolate
import torch
import MinkowskiEngine as ME
# A sparse tensor consists of coordinates and associated features.
# You must apply augmentation to both.
# In 2D, flip, shear, scale, and rotation of images are coordinate transformation
# color jitter, hue, etc., are feature transformations
##############################
# Feature transformations
##############################
class ChromaticTranslation(object):
"""Add random color to the image, input must be an array in [0,255] or a PIL image"""
def __init__(self, trans_range_ratio=1e-1):
"""
trans_range_ratio: ratio of translation i.e. 255 * 2 * ratio * rand(-0.5, 0.5)
"""
self.trans_range_ratio = trans_range_ratio
def __call__(self, coords, feats, labels):
if random.random() < 0.95:
tr = (np.random.rand(1, 3) - 0.5) * 255 * 2 * self.trans_range_ratio
feats[:, :3] = np.clip(tr + feats[:, :3], 0, 255)
return coords, feats, labels
class ChromaticAutoContrast(object):
def __init__(self, randomize_blend_factor=True, blend_factor=0.5):
self.randomize_blend_factor = randomize_blend_factor
self.blend_factor = blend_factor
def __call__(self, coords, feats, labels):
if random.random() < 0.2:
# mean = np.mean(feats, 0, keepdims=True)
# std = np.std(feats, 0, keepdims=True)
# lo = mean - std
# hi = mean + std
lo = feats[:, :3].min(0, keepdims=True)
hi = feats[:, :3].max(0, keepdims=True)
assert hi.max() > 1, f"invalid color value. Color is supposed to be [0-255]"
scale = 255 / (hi - lo)
contrast_feats = (feats[:, :3] - lo) * scale
blend_factor = random.random() if self.randomize_blend_factor else self.blend_factor
feats[:, :3] = (1 - blend_factor) * feats + blend_factor * contrast_feats
return coords, feats, labels
class ChromaticJitter(object):
def __init__(self, std=0.01):
self.std = std
def __call__(self, coords, feats, labels):
if random.random() < 0.95:
noise = np.random.randn(feats.shape[0], 3)
noise *= self.std * 255
feats[:, :3] = np.clip(noise + feats[:, :3], 0, 255)
return coords, feats, labels
class HueSaturationTranslation(object):
@staticmethod
def rgb_to_hsv(rgb):
# Translated from source of colorsys.rgb_to_hsv
# r,g,b should be a numpy arrays with values between 0 and 255
# rgb_to_hsv returns an array of floats between 0.0 and 1.0.
rgb = rgb.astype('float')
hsv = np.zeros_like(rgb)
# in case an RGBA array was passed, just copy the A channel
hsv[..., 3:] = rgb[..., 3:]
r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2]
maxc = np.max(rgb[..., :3], axis=-1)
minc = np.min(rgb[..., :3], axis=-1)
hsv[..., 2] = maxc
mask = maxc != minc
hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask]
rc = np.zeros_like(r)
gc = np.zeros_like(g)
bc = np.zeros_like(b)
rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask]
gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask]
bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask]
hsv[..., 0] = np.select([r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc)
hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0
return hsv
@staticmethod
def hsv_to_rgb(hsv):
# Translated from source of colorsys.hsv_to_rgb
# h,s should be a numpy arrays with values between 0.0 and 1.0
# v should be a numpy array with values between 0.0 and 255.0
# hsv_to_rgb returns an array of uints between 0 and 255.
rgb = np.empty_like(hsv)
rgb[..., 3:] = hsv[..., 3:]
h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2]
i = (h * 6.0).astype('uint8')
f = (h * 6.0) - i
p = v * (1.0 - s)
q = v * (1.0 - s * f)
t = v * (1.0 - s * (1.0 - f))
i = i % 6
conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5]
rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v)
rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t)
rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p)
return rgb.astype('uint8')
def __init__(self, hue_max, saturation_max):
self.hue_max = hue_max
self.saturation_max = saturation_max
def __call__(self, coords, feats, labels):
# Assume feat[:, :3] is rgb
hsv = HueSaturationTranslation.rgb_to_hsv(feats[:, :3])
hue_val = (random.random() - 0.5) * 2 * self.hue_max
sat_ratio = 1 + (random.random() - 0.5) * 2 * self.saturation_max
hsv[..., 0] = np.remainder(hue_val + hsv[..., 0] + 1, 1)
hsv[..., 1] = np.clip(sat_ratio * hsv[..., 1], 0, 1)
feats[:, :3] = np.clip(HueSaturationTranslation.hsv_to_rgb(hsv), 0, 255)
return coords, feats, labels
##############################
# Coordinate transformations
##############################
class RandomDropout(object):
def __init__(self, dropout_ratio=0.2, dropout_application_ratio=0.5):
"""
upright_axis: axis index among x,y,z, i.e. 2 for z
"""
self.dropout_ratio = dropout_ratio
self.dropout_application_ratio = dropout_application_ratio
def __call__(self, coords, feats, labels):
if random.random() < self.dropout_ratio:
N = len(coords)
inds = np.random.choice(N, int(N * (1 - self.dropout_ratio)), replace=False)
return coords[inds], feats[inds], labels[inds]
return coords, feats, labels
class RandomHorizontalFlip(object):
def __init__(self, upright_axis, is_temporal):
"""
upright_axis: axis index among x,y,z, i.e. 2 for z
"""
self.is_temporal = is_temporal
self.D = 4 if is_temporal else 3
self.upright_axis = {'x': 0, 'y': 1, 'z': 2}[upright_axis.lower()]
# Use the rest of axes for flipping.
self.horz_axes = set(range(self.D)) - set([self.upright_axis])
def __call__(self, coords, feats, labels):
if random.random() < 0.95:
for curr_ax in self.horz_axes:
if random.random() < 0.5:
coord_max = np.max(coords[:, curr_ax])
coords[:, curr_ax] = coord_max - coords[:, curr_ax]
return coords, feats, labels
class ElasticDistortion:
def __init__(self, distortion_params):
self.distortion_params = distortion_params
def elastic_distortion(self, coords, feats, labels, granularity, magnitude):
"""Apply elastic distortion on sparse coordinate space.
pointcloud: numpy array of (number of points, at least 3 spatial dims)
granularity: size of the noise grid (in same scale[m/cm] as the voxel grid)
magnitude: noise multiplier
"""
blurx = np.ones((3, 1, 1, 1)).astype('float32') / 3
blury = np.ones((1, 3, 1, 1)).astype('float32') / 3
blurz = np.ones((1, 1, 3, 1)).astype('float32') / 3
coords_min = coords.min(0)
# Create Gaussian noise tensor of the size given by granularity.
noise_dim = ((coords - coords_min).max(0) // granularity).astype(int) + 3
noise = np.random.randn(*noise_dim, 3).astype(np.float32)
# Smoothing.
for _ in range(2):
noise = scipy.ndimage.filters.convolve(noise, blurx, mode='constant', cval=0)
noise = scipy.ndimage.filters.convolve(noise, blury, mode='constant', cval=0)
noise = scipy.ndimage.filters.convolve(noise, blurz, mode='constant', cval=0)
# Trilinear interpolate noise filters for each spatial dimensions.
ax = [
np.linspace(d_min, d_max, d)
for d_min, d_max, d in zip(coords_min - granularity, coords_min + granularity *
(noise_dim - 2), noise_dim)
]
interp = scipy.interpolate.RegularGridInterpolator(ax, noise, bounds_error=0, fill_value=0)
coords += interp(coords) * magnitude
return coords, feats, labels
def __call__(self, coords, feats, labels):
if self.distortion_params is not None:
if random.random() < 0.95:
for granularity, magnitude in self.distortion_params:
coords, feats, labels = self.elastic_distortion(coords, feats, labels, granularity,
magnitude)
return coords, feats, labels
class Compose(object):
"""Composes several transforms together."""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *args):
for t in self.transforms:
args = t(*args)
return args
class cfl_collate_fn_factory:
"""Generates collate function for coords, feats, labels.
Args:
limit_numpoints: If 0 or False, does not alter batch size. If positive integer, limits batch
size so that the number of input coordinates is below limit_numpoints.
"""
def __init__(self, limit_numpoints):
self.limit_numpoints = limit_numpoints
def __call__(self, list_data):
coords, feats, labels = list(zip(*list_data))
coords_batch, feats_batch, labels_batch = [], [], []
batch_id = 0
batch_num_points = 0
for batch_id, _ in enumerate(coords):
num_points = coords[batch_id].shape[0]
batch_num_points += num_points
if self.limit_numpoints and batch_num_points > self.limit_numpoints:
num_full_points = sum(len(c) for c in coords)
num_full_batch_size = len(coords)
logging.warning(
f'\t\tCannot fit {num_full_points} points into {self.limit_numpoints} points '
f'limit. Truncating batch size at {batch_id} out of {num_full_batch_size} with {batch_num_points - num_points}.'
)
break
coords_batch.append(torch.from_numpy(coords[batch_id]).int())
feats_batch.append(torch.from_numpy(feats[batch_id]))
labels_batch.append(torch.from_numpy(labels[batch_id]).int())
batch_id += 1
# Concatenate all lists
coords_batch, feats_batch, labels_batch = ME.utils.sparse_collate(coords_batch, feats_batch, labels_batch)
return coords_batch, feats_batch.float(), labels_batch
class cflt_collate_fn_factory:
"""Generates collate function for coords, feats, labels, point_clouds, transformations.
Args:
limit_numpoints: If 0 or False, does not alter batch size. If positive integer, limits batch
size so that the number of input coordinates is below limit_numpoints.
"""
def __init__(self, limit_numpoints):
self.limit_numpoints = limit_numpoints
def __call__(self, list_data):
coords, feats, labels, transformations = list(zip(*list_data))
cfl_collate_fn = cfl_collate_fn_factory(limit_numpoints=self.limit_numpoints)
coords_batch, feats_batch, labels_batch = cfl_collate_fn(list(zip(coords, feats, labels)))
num_truncated_batch = coords_batch[:, -1].max().item() + 1
batch_id = 0
transformations_batch = []
for transformation in transformations:
if batch_id >= num_truncated_batch:
break
transformations_batch.append(torch.from_numpy(transformation).float())
batch_id += 1
return coords_batch, feats_batch, labels_batch, transformations_batch