-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathlayers.py
85 lines (66 loc) · 2.84 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn as nn
from MinkowskiEngine import MinkowskiGlobalPooling, MinkowskiBroadcastAddition, MinkowskiBroadcastMultiplication
class MinkowskiLayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-5, D=-1):
super(MinkowskiLayerNorm, self).__init__()
self.num_features = num_features
self.eps = eps
self.weight = nn.Parameter(torch.ones(1, num_features))
self.bias = nn.Parameter(torch.zeros(1, num_features))
self.mean_in = MinkowskiGlobalPooling(dimension=D)
self.glob_sum = MinkowskiBroadcastAddition(dimension=D)
self.glob_sum2 = MinkowskiBroadcastAddition(dimension=D)
self.glob_mean = MinkowskiGlobalPooling(dimension=D)
self.glob_times = MinkowskiBroadcastMultiplication(dimension=D)
self.D = D
self.reset_parameters()
def __repr__(self):
s = f'(D={self.D})'
return self.__class__.__name__ + s
def reset_parameters(self):
self.weight.data.fill_(1)
self.bias.data.zero_()
def _check_input_dim(self, input):
if input.F.dim() != 2:
raise ValueError('expected 2D input (got {}D input)'.format(input.dim()))
def forward(self, x):
self._check_input_dim(x)
mean = self.mean_in(x).F.mean(-1, keepdim=True)
mean = mean + torch.zeros(mean.size(0), self.num_features).type_as(mean)
temp = self.glob_sum(x.F, -mean)**2
var = self.glob_mean(temp.data).mean(-1, keepdim=True)
var = var + torch.zeros(var.size(0), self.num_features).type_as(var)
instd = 1 / (var + self.eps).sqrt()
x = self.glob_times(self.glob_sum2(x, -mean), instd)
return x * self.weight + self.bias
class MinkowskiInstanceNorm(nn.Module):
def __init__(self, num_features, eps=1e-5, D=-1):
super(MinkowskiInstanceNorm, self).__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(1, num_features))
self.bias = nn.Parameter(torch.zeros(1, num_features))
self.mean_in = MinkowskiGlobalPooling(dimension=D)
self.glob_sum = MinkowskiBroadcastAddition(dimension=D)
self.glob_sum2 = MinkowskiBroadcastAddition(dimension=D)
self.glob_mean = MinkowskiGlobalPooling(dimension=D)
self.glob_times = MinkowskiBroadcastMultiplication(dimension=D)
self.D = D
self.reset_parameters()
def __repr__(self):
s = f'(pixel_dist={self.pixel_dist}, D={self.D})'
return self.__class__.__name__ + s
def reset_parameters(self):
self.weight.data.fill_(1)
self.bias.data.zero_()
def _check_input_dim(self, input):
if input.dim() != 2:
raise ValueError('expected 2D input (got {}D input)'.format(input.dim()))
def forward(self, x):
self._check_input_dim(x)
mean_in = self.mean_in(x)
temp = self.glob_sum(x, -mean_in)**2
var_in = self.glob_mean(temp.data)
instd_in = 1 / (var_in + self.eps).sqrt()
x = self.glob_times(self.glob_sum2(x, -mean_in), instd_in)
return x * self.weight + self.bias