-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathGenerateTrainData1ChanVarMix.m
204 lines (172 loc) · 5.61 KB
/
GenerateTrainData1ChanVarMix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
%data1-feature1, data2 2-original data2-10
function GenerateTrainData1ChanVarMix(task, cr1, cr2)
addpath('/home/user/kaixu/myGitHub/caffe/matlab/');
folder = ['~/myGitHub/datasets/UCF101/',task, 'Data/5_196/'];
paths = dir(folder);
paths(1:2) = [];
totalct = 0;
created_flag = false;
for i = 1:length(paths)
totalct = GenerateGroupTrainData1ChanVarMix(cr1, cr2, num2str(i), task, totalct, created_flag);
created_flag = true;
end
end
%%
function totalct = GenerateGroupTrainData1ChanVarMix(cr1, cr2, group, task, totalct_last, created_flag)
if cr1 == 5
load ./phi/phi3_cr5.mat
phi1 = phi3;
elseif cr1 == 25
load ./phi/phi3_cr25.mat
phi1 = phi3;
elseif cr1 == 50
load ./phi/phi3_cr50.mat
phi1 = phi3;
elseif cr1 == 100
load ./phi/phi3_cr100.mat
phi1 = phi3;
end
if cr2 == 5
load ./phi/phi3_cr5.mat
phi2 = phi3;
elseif cr2 == 16
load ./phi/phi3_cr16.mat
phi2 = phi3;
elseif cr2 == 25
load ./phi/phi3_cr25.mat
phi2 = phi3;
elseif cr2 == 50
load ./phi/phi3_cr50.mat
phi2 = phi3;
elseif cr2 == 100
load ./phi/phi3_cr100.mat
phi2 = phi3;
end
phase = 'test';
%%
if cr1 == 5
net_model = ['/home/user/kaixu/myGitHub/caffe/examples/videoNet/training/models/cr5/'... ...
'videoNetCNN_cr5_deploy_feature_10172016.prototxt'];
net_weights = ['/home/user/kaixu/myGitHub/caffe/examples/videoNet/training/models/cr5/'...
'Snapshots/cr_5_CNN_10172016/videoNetCNN_5_iter_175000.caffemodel'];
elseif cr1 == 25
net_model = ['/home/user/kaixu/myGitHub/caffe/examples/videoNet/training/models/cr25/'... ...
'videoNetCNN_cr25_deploy_feature_10172016.prototxt'];
net_weights = ['/home/user/kaixu/myGitHub/caffe/examples/videoNet/training/models/cr25/'...
'Snapshots/cr_25_CNN_10172016/videoNetCNN_25_iter_170000.caffemodel'];
end
id = 2;
caffe.set_mode_gpu();
caffe.set_device(id);
net = caffe.Net(net_model, net_weights, phase);
%%
folder = ['~/myGitHub/datasets/UCF101/', task, 'Data/5_196/group', num2str(group), '/'];
savepath = ['./data/',task,'Data_',num2str(cr1),'_',num2str(cr2),'_mix_10172016.h5'];
if strcmp(task, 'Train') == 1
step = 1;
elseif strcmp(task, 'Val') == 1
step = 2;
else
step = 1;
end
imgHeight = 196;
imgWidth = 196;
numChannels = 1;
cnnHidden = 16;
size_input = 32;
size_label = 32;
crop = 18;
stride = size_input;
seq_length = 10; % length of the LSTM
% data = zeros(seq_length, numChannels, size(phi3,1), 1, 1, 'single');
% label = zeros(seq_length, numChannels, size_label, size_label, 1, 'uint8');
data1 = zeros(size_label, size_label, cnnHidden, 1, 1, 'single');
data2 = zeros(size(phi2,1), 1, numChannels, seq_length-1, 1, 'single');
label = zeros(size_label, size_label, numChannels, seq_length, 1, 'single');
% padding = abs(size_input - size_label)/2;
count = 1;
im_label = zeros(imgHeight-2*crop, imgWidth-2*crop, numChannels, seq_length);
subim_input = zeros(size_input, size_input, numChannels, seq_length);
subim_label = zeros(size_input, size_input, numChannels, seq_length);
subim_input_dr1 = zeros(size(phi1,1), 1, numChannels, 1);
subim_input_dr2 = zeros(size(phi2,1), 1, numChannels, seq_length-1);
paths = dir(folder);
paths(1:2) = [];
newPaths = [];
for i = 1:step:length(paths)
newPaths = [newPaths,paths(i)];
end
% h = waitbar(0,'Writing train data to hdf5 file, please wait...');
for i = 1:length(newPaths)
filename = dir([folder, newPaths(i).name]);
filename(1:2) = []; % filenames in each subfolder
len = length(filename);
tmp = floor(len / seq_length);
if tmp >= 3
tmp = 3;
end
numImage = tmp * seq_length;
for j = 1:seq_length:numImage
for k = 1:seq_length
rawImg = imread([folder, newPaths(i).name, '/', filename(j+k-1).name]);
rawImg = rgb2ycbcr(rawImg);
rawImg = im2double(rawImg(:,:,1));
rawImg = rawImg(crop+1:end-crop,crop+1:end-crop);
im_label(:,:,:,k) = rawImg;
[hei,wid, ~, ~] = size(im_label);
end
for x = 1 : stride : hei-size_input+1
for y = 1 : stride : wid-size_input+1
for z = 1 : seq_length
subim_input(:, :, :, z) = im_label(x : x+size_input-1, y : y+size_input-1, :, z);
subim_input_rs = reshape(subim_input, [],numChannels, seq_length);
if z == 1
for xx = 1:numChannels
if size(phi1, 1) == size_input^2
subim_input_dr1(:,:,xx,1) = subim_input_rs(:,xx,z);
else
subim_input_dr1 = phi1(:,:,xx) * subim_input_rs(:,xx,z);
feature = net.forward({subim_input_dr1});
feature = feature{1};
end
end
else
for xx = 1:numChannels
subim_input_dr2(:,:,xx,z-1) = phi2(:,:,xx) * subim_input_rs(:,xx,z);
end
end
subim_label(:, :, :, z) = im_label(x : x+size_label-1, ...
y : y+size_label-1, :, z);
end
data1(:, :, :, :, count) = feature;
data2(:, :, :, :, count) = subim_input_dr2;
label(:, :, :, :, count) = subim_label;
count=count+1;
end
end
end
disp(['group', num2str(group), ', ', num2str(i/length(newPaths)*100),'%']);
end
if strcmp(task, 'Train') ~= 0
count = count - 1;
order = randperm(count);
data1 = data1(:, :, :, :, order);
data2 = data2(:, :, :, :, order);
label = label(:, :, :, :, order);
end
% writing to HDF5
chunksz = 20;
% created_flag = false;
totalct = totalct_last;
for batchno = 1:floor(count/chunksz)
last_read=(batchno-1) * chunksz;
batchdata1 = data1(:,:,:,:,last_read+1:last_read+chunksz);
batchdata2 = data2(:,:,:,:,last_read+1:last_read+chunksz);
batchlabs = label(:,:,:,:,last_read+1:last_read+chunksz);
startloc = struct('dat1',[1,1,1,1,totalct+1], 'dat2', [1,1,1,1,totalct+1], 'lab', [1,1,1,1,totalct+1]);
curr_dat_sz = store2hdf5Mix(savepath, batchdata1, batchdata2, batchlabs, ~created_flag, startloc, chunksz);
created_flag = true;
totalct = curr_dat_sz(end);
end
h5disp(savepath);
end