|
1 | 1 | \begin{exo}
|
2 |
| - \donnee{Considérons une variable aléatoire $\X$ dont la fonction de densité est $f_x(u)= |
| 2 | + \donnee{Considérons une variable aléatoire $X$ dont la fonction de densité est $f_x(u)= |
3 | 3 | \begin{cases}
|
4 | 4 | \frac{1}{2} & \text{si $-1\leq u \leq 1$ } \\
|
5 | 5 | 0 & \text{ sinon.} \\
|
6 | 6 | \end{cases}$
|
7 | 7 | Calculez les probabilités:}
|
8 |
| - \begin{subexo}{$P(\X = \frac{3}{4})$} |
| 8 | + \begin{subexo}{$P(X = \frac{3}{4})$} |
9 | 9 | \begin{center}
|
10 |
| - La probabilité $P(\X = \frac{3}{4}) = 0$ |
| 10 | + La probabilité $P(X = \frac{3}{4}) = 0$ |
11 | 11 | \end{center}
|
12 | 12 | \end{subexo}
|
13 |
| - \begin{subexo}{$P(-\frac{1}{2} \leq \X \leq \frac{1}{2})$} |
| 13 | + \begin{subexo}{$P(-\frac{1}{2} \leq X \leq \frac{1}{2})$} |
14 | 14 | \begin{flushleft}
|
15 | 15 | \begin{align*}
|
16 | 16 | \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}}{F(x)}dx &=\int_{-\frac{1}{2}}^{\frac{1}{2}}{\frac{1}{2}}du\\
|
|
20 | 20 | \end{align*}
|
21 | 21 | \end{flushleft}
|
22 | 22 | \end{subexo}
|
23 |
| - \begin{subexo}{$P(\X \leq \frac{1}{2})$} |
| 23 | + \begin{subexo}{$P(X \leq \frac{1}{2})$} |
| 24 | + \begin{flushleft} |
| 25 | + \begin{align*} |
| 26 | + \displaystyle\int_{-1}^{\frac{1}{2}}{F(x)}dx &=\int_{-1}^{\frac{1}{2}}{\frac{1}{2}}du\\ |
| 27 | + &= \dfrac{u}{2}\bigg\vert_{-1}^{\frac{1}{2}}\\ |
| 28 | + &= \frac{1}{4}-(-\frac{1}{2}) \\ |
| 29 | + &= \frac{3}{4} |
| 30 | + \end{align*} |
| 31 | + \end{flushleft} |
24 | 32 | \end{subexo}
|
25 |
| - \begin{subexo}{$P(\X^{2} \geq \frac{1}{4})$} |
| 33 | + \begin{subexo}{$P(X^{2} \geq \frac{1}{4})$} |
| 34 | + \begin{flushleft} |
| 35 | + \begin{center} |
| 36 | + Premièrement, observons que le problème est équivalent à: $P(\abs{X} \geq \frac{1}{2})$. |
| 37 | + Il s'en suit, $ |
| 38 | + \abs{X} \geq \frac{1}{2} \iff |
| 39 | + \begin{cases} |
| 40 | + \frac{1}{2} & \text{si $X \geq 0$ } \\ |
| 41 | + -\frac{1}{2} & \text{si $X < 0$.} \\ |
| 42 | + \end{cases}$ |
| 43 | + Finalement, |
| 44 | + \end{center} |
| 45 | + \begin{align*} |
| 46 | + P(X^{2} \geq \frac{1}{4}) & = |
| 47 | + \displaystyle\int_{-1}^{-\frac{1}{2}}{F(x)}dx + \displaystyle\int_{\frac{1}{2}}^{1}{F(x)}dx\\ |
| 48 | + &= \dfrac{u}{2}\bigg\vert_{-1}^{-\frac{1}{2}} + \dfrac{u}{2}\bigg\vert_{\frac{1}{2}}^{1}\\ |
| 49 | + &= -\frac{1}{4}-(-\frac{1}{2}) + \frac{1}{2}-(\frac{1}{4})\\ |
| 50 | + &= 1 -\frac{1}{2} = \frac{1}{2} |
| 51 | + \end{align*} |
| 52 | + \end{flushleft} |
26 | 53 | \end{subexo}
|
27 |
| - \begin{subexo}{$P(\X \in A)$ où $A = \intervalleff{-\frac{1}{2}}{0}\cup\intervalleff{\frac{3}{4}}{2}$} |
| 54 | + \begin{subexo}{$P(X \in A)$ où $A = \intervalleff{-\frac{1}{2}}{0}\cup\intervalleff{\frac{3}{4}}{2}$} |
| 55 | + \begin{align*} |
| 56 | + P(X \in A) & = |
| 57 | + \displaystyle\int_{-\frac{1}{2}}^{0}{F(x)}dx + \displaystyle\int_{\frac{3}{4}}^{1}{F(x)}dx\\ |
| 58 | + &= \dfrac{u}{2}\bigg\vert_{-\frac{1}{2}}^{0} + \dfrac{u}{2}\bigg\vert_{\frac{3}{4}}^{1}\\ |
| 59 | + &= 0-(-\frac{1}{4}) + \frac{1}{2}-(\frac{3}{8})\\ |
| 60 | + &= \frac{1}{4} + \frac{1}{8} = \frac{3}{8} |
| 61 | + \end{align*} |
28 | 62 | \end{subexo}
|
29 | 63 | \end{exo}
|
0 commit comments