Skip to content

Commit 1b10a8e

Browse files
committed
minor installation instruction update
1 parent 84c52b7 commit 1b10a8e

File tree

1 file changed

+17
-24
lines changed

1 file changed

+17
-24
lines changed

README.md

+17-24
Original file line numberDiff line numberDiff line change
@@ -69,6 +69,10 @@ We visualized a sparse tensor network operation on a sparse tensor, convolution,
6969
You can install the Minkowski Engine with `pip`, with anaconda, or on the system directly. If you experience issues installing the package, please checkout the [the installation wiki page](https://github.com/NVIDIA/MinkowskiEngine/wiki/Installation).
7070
If you cannot find a relevant problem, please report the issue on [the github issue page](https://github.com/NVIDIA/MinkowskiEngine/issues).
7171

72+
- [PIP](https://github.com/NVIDIA/MinkowskiEngine#pip) installation
73+
- [Conda](https://github.com/NVIDIA/MinkowskiEngine#anaconda) installation
74+
- [Python](https://github.com/NVIDIA/MinkowskiEngine#system-python) installation
75+
7276
### Pip
7377

7478
The MinkowskiEngine is distributed via [PyPI MinkowskiEngine][pypi-url] which can be installed simply with `pip`.
@@ -78,15 +82,14 @@ First, install pytorch following the [instruction](https://pytorch.org). Next, i
7882
sudo apt install libopenblas-dev
7983
pip install torch
8084
pip install -U MinkowskiEngine --install-option="--blas=openblas" -v
85+
86+
# For pip installation from the latest source
87+
# pip install -U git+https://github.com/NVIDIA/MinkowskiEngine
8188
```
8289

83-
### Pip from the latest source
90+
If you want to specify arguments for the setup script, please refer to the following command.
8491

8592
```
86-
sudo apt install libopenblas-dev
87-
pip install torch
88-
export CXX=g++-7
89-
9093
# Uncomment some options if things don't work
9194
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine \
9295
# \ # uncomment the following line if you want to force cuda installation
@@ -102,29 +105,16 @@ pip install -U git+https://github.com/NVIDIA/MinkowskiEngine \
102105
### Anaconda
103106

104107
We recommend `python>=3.6` for installation.
105-
106-
107-
#### 1. Create a conda virtual environment and install requirements.
108-
109108
First, follow [the anaconda documentation](https://docs.anaconda.com/anaconda/install/) to install anaconda on your computer.
110109

111110
```
112-
conda create -n py3-mink python=3.7
113-
conda activate py3-mink
114-
conda install numpy mkl-include pytorch cudatoolkit=10.2 -c pytorch
115-
```
116-
117-
#### 2. Compilation and installation
118-
119-
```
120-
conda activate py3-mink
121-
git clone https://github.com/NVIDIA/MinkowskiEngine.git
122-
cd MinkowskiEngine
123111
sudo apt install libopenblas-dev
124-
python setup.py install --blas=openblas
112+
conda create -n py3-mink python=3.8
113+
conda activate py3-mink
114+
conda install numpy mkl-include pytorch cudatoolkit=11.0 -c pytorch
115+
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine
125116
```
126117

127-
128118
### System Python
129119

130120
Like the anaconda installation, make sure that you install pytorch with the same CUDA version that `nvcc` uses.
@@ -144,6 +134,8 @@ git clone https://github.com/NVIDIA/MinkowskiEngine.git
144134
cd MinkowskiEngine
145135
146136
python setup.py install
137+
# To specify blas, CUDA_HOME and force CUDA installation, use the following command
138+
# python setup.py install --blas=openblas --cuda_home=/usr/local/cuda --force_cuda
147139
```
148140

149141

@@ -229,6 +221,7 @@ For issues not listed on the API and feature requests, feel free to submit
229221
an issue on the [github issue
230222
page](https://github.com/NVIDIA/MinkowskiEngine/issues).
231223

224+
232225
## Known Issues
233226

234227
### Too much GPU memory usage or Frequent Out of Memory
@@ -238,12 +231,12 @@ However, pytorch is implemented assuming that the number of point, or size of th
238231

239232
Specifically, pytorch caches chunks of memory spaces to speed up allocation used in every tensor creation. If it fails to find the memory space, it splits an existing cached memory or allocate new space if there's no cached memory large enough for the requested size. Thus, every time we use different number of point (number of non-zero elements) with pytorch, it either split existing cache or reserve new memory. If the cache is too fragmented and allocated all GPU space, it will raise out of memory error.
240233

241-
To prevent this, you must clear the cache at regular interval with `torch.cuda.empty_cache()`.
234+
**To prevent this, you must clear the cache at regular interval with `torch.cuda.empty_cache()`.**
235+
242236

243237
### Running the MinkowskiEngine on nodes with a large number of CPUs
244238

245239
The MinkowskiEngine uses OpenMP to parallelize the kernel map generation. However, when the number of threads used for parallelization is too large (e.g. OMP_NUM_THREADS=80), the efficiency drops rapidly as all threads simply wait for multithread locks to be released.
246-
247240
In such cases, set the number of threads used for OpenMP. Usually, any number below 24 would be fine, but search for the optimal setup on your system.
248241

249242
```

0 commit comments

Comments
 (0)