-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDrawSphere.h
224 lines (182 loc) · 8.12 KB
/
DrawSphere.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#pragma once
#include "irrlicht.h"
#include <vector>
using namespace irr;
using namespace scene;
using namespace core;
using namespace video;
#define M_PI 3.14159265358979323846
#define M_PI_2 1.57079632679489661923
inline void genSphere(vector3df center, std::vector<S3DVertex>& vertices, std::vector<u16>& indices,
float radius, float height, u32 rings, u32 sectors, SColor col) {
float const R = 1.0f / (rings - 1);
float const S = 1.0f / (sectors - 1);
float halfHeight = height * 0.5f;
u32 baseIndex = vertices.size();
// Generate Top Hemisphere
for (u32 r = 0; r <= rings / 2; ++r) {
float v = float(r) / (rings / 2);
float phi = v * M_PI_2;
for (u32 s = 0; s < sectors; ++s) {
float u = float(s) / (sectors - 1);
float theta = u * 2.0f * M_PI;
float x = cos(theta) * sin(phi);
float y = cos(phi);
float z = sin(theta) * sin(phi);
vector3df position = vector3df(x * radius, (y * radius) + halfHeight, z * radius) + center;
vertices.push_back(S3DVertex(position, vector3df(x, y, z), col, vector2df(u, v)));
}
}
// Generate Cylinder
u32 cylinderStart = vertices.size();
for (u32 r = 0; r < 2; ++r) {
float y = (r == 0) ? halfHeight : -halfHeight;
for (u32 s = 0; s < sectors; ++s) {
float theta = float(s) / (sectors - 1) * 2.0f * M_PI;
float x = cos(theta) * radius;
float z = sin(theta) * radius;
vector3df position = vector3df(x, y, z) + center;
vertices.push_back(S3DVertex(position, vector3df(x, 0, z), col, vector2df(float(s) / sectors, float(r))));
}
}
// Generate Bottom Hemisphere
u32 bottomStart = vertices.size();
for (u32 r = 0; r <= rings / 2; ++r) {
float v = float(r) / (rings / 2);
float phi = M_PI_2 + v * M_PI_2;
for (u32 s = 0; s < sectors; ++s) {
float u = float(s) / (sectors - 1);
float theta = u * 2.0f * M_PI;
float x = cos(theta) * sin(phi);
float y = cos(phi);
float z = sin(theta) * sin(phi);
vector3df position = vector3df(x * radius, (y * radius) - halfHeight, z * radius) + center;
vertices.push_back(S3DVertex(position, vector3df(x, y, z), col, vector2df(u, v)));
}
}
// Generate Index Data
for (u32 r = 0; r < rings / 2; ++r) {
for (u32 s = 0; s < sectors - 1; ++s) {
u16 i1 = baseIndex + r * sectors + s;
u16 i2 = baseIndex + r * sectors + (s + 1);
u16 i3 = baseIndex + (r + 1) * sectors + s;
indices.push_back(i1); indices.push_back(i2);
indices.push_back(i1); indices.push_back(i3);
}
}
for (u32 r = 0; r < 1; ++r) {
for (u32 s = 0; s < sectors - 1; ++s) {
u16 i1 = cylinderStart + r * sectors + s;
u16 i2 = cylinderStart + r * sectors + (s + 1);
u16 i3 = cylinderStart + (r + 1) * sectors + s;
indices.push_back(i1); indices.push_back(i2);
indices.push_back(i1); indices.push_back(i3);
}
}
for (u32 r = 0; r < rings / 2; ++r) {
for (u32 s = 0; s < sectors - 1; ++s) {
u16 i1 = bottomStart + r * sectors + s;
u16 i2 = bottomStart + r * sectors + (s + 1);
u16 i3 = bottomStart + (r + 1) * sectors + s;
indices.push_back(i1); indices.push_back(i2);
indices.push_back(i1); indices.push_back(i3);
}
}
}
inline void renderSphere(vector3df pos, float rad = 5.0f, float height = 5.0f, u32 rings = 20, u32 sectors = 20, SColor col = SColor()) {
std::vector<S3DVertex> vertices;
std::vector<u16> indices;
genSphere(pos, vertices, indices, rad, height, rings, sectors, col);
driver->drawVertexPrimitiveList(vertices.data(), vertices.size(),
indices.data(), indices.size() / 2,
EVT_STANDARD, EPT_LINES, EIT_16BIT);
}
// Generate capsule
inline SMeshBuffer* genCapsule(vector3df center, float radius, float height, u32 rings, u32 sectors) {
SMeshBuffer* meshBuffer = new SMeshBuffer();
float const R = 1.0f / (rings - 1);
float const S = 1.0f / (sectors - 1);
float halfHeight = height * 0.5f;
u32 baseIndex = meshBuffer->Vertices.size();
for (u32 r = 0; r <= rings / 2; ++r) {
float phi = (float(r) / (rings / 2)) * M_PI_2;
for (u32 s = 0; s < sectors; ++s) {
float theta = (float(s) / (sectors - 1)) * 2.0f * M_PI;
float x = cos(theta) * sin(phi);
float y = cos(phi);
float z = sin(theta) * sin(phi);
vector3df position = vector3df(x * radius, (y * radius) + height, z * radius) + center;
meshBuffer->Vertices.push_back(S3DVertex(position, vector3df(x, y, z), SColor(255, 255, 255, 255), vector2df(float(s) / sectors, float(r) / rings)));
}
}
u32 cylinderStart = meshBuffer->Vertices.size();
for (u32 r = 0; r < 2; ++r) {
float y = (r == 0) ? height : 0;
for (u32 s = 0; s < sectors; ++s) {
float theta = (float(s) / (sectors - 1)) * 2.0f * M_PI;
float x = cos(theta) * radius;
float z = sin(theta) * radius;
vector3df position = vector3df(x, y, z) + center;
meshBuffer->Vertices.push_back(S3DVertex(position, vector3df(x, 0, z), SColor(255, 255, 255, 255), vector2df(float(s) / sectors, float(r))));
}
}
u32 bottomStart = meshBuffer->Vertices.size();
for (u32 r = 0; r <= rings / 2; ++r) {
float phi = M_PI_2 + (float(r) / (rings / 2)) * M_PI_2;
for (u32 s = 0; s < sectors; ++s) {
float theta = (float(s) / (sectors - 1)) * 2.0f * M_PI;
float x = cos(theta) * sin(phi);
float y = cos(phi);
float z = sin(theta) * sin(phi);
vector3df position = vector3df(x * radius, (y * radius), z * radius) + center;
meshBuffer->Vertices.push_back(S3DVertex(position, vector3df(x, y, z), SColor(255,255,255,255), vector2df(float(s) / sectors, float(r) / rings)));
}
}
for (u32 r = 0; r < rings / 2; ++r) {
for (u32 s = 0; s < sectors - 1; ++s) {
u16 i1 = baseIndex + r * sectors + s;
u16 i2 = baseIndex + r * sectors + (s + 1);
u16 i3 = baseIndex + (r + 1) * sectors + s;
u16 i4 = baseIndex + (r + 1) * sectors + (s + 1);
meshBuffer->Indices.push_back(i1);
meshBuffer->Indices.push_back(i2);
meshBuffer->Indices.push_back(i3);
meshBuffer->Indices.push_back(i2);
meshBuffer->Indices.push_back(i4);
meshBuffer->Indices.push_back(i3);
}
}
for (u32 r = 0; r < 1; ++r) {
for (u32 s = 0; s < sectors - 1; ++s) {
u16 i1 = cylinderStart + r * sectors + s;
u16 i2 = cylinderStart + r * sectors + (s + 1);
u16 i3 = cylinderStart + (r + 1) * sectors + s;
u16 i4 = cylinderStart + (r + 1) * sectors + (s + 1);
meshBuffer->Indices.push_back(i1);
meshBuffer->Indices.push_back(i2);
meshBuffer->Indices.push_back(i3);
meshBuffer->Indices.push_back(i2);
meshBuffer->Indices.push_back(i4);
meshBuffer->Indices.push_back(i3);
}
}
for (u32 r = 0; r < rings / 2; ++r) {
for (u32 s = 0; s < sectors - 1; ++s) {
u16 i1 = bottomStart + r * sectors + s;
u16 i2 = bottomStart + r * sectors + (s + 1);
u16 i3 = bottomStart + (r + 1) * sectors + s;
u16 i4 = bottomStart + (r + 1) * sectors + (s + 1);
meshBuffer->Indices.push_back(i1);
meshBuffer->Indices.push_back(i2);
meshBuffer->Indices.push_back(i3);
meshBuffer->Indices.push_back(i2);
meshBuffer->Indices.push_back(i4);
meshBuffer->Indices.push_back(i3);
}
}
meshBuffer->BoundingBox.reset(meshBuffer->Vertices[0].Pos);
for (u32 i = 1; i < meshBuffer->Vertices.size(); ++i) {
meshBuffer->BoundingBox.addInternalPoint(meshBuffer->Vertices[i].Pos);
}
return meshBuffer;
}