@@ -197,28 +197,27 @@ void plan_arc(
197
197
// Feedrate for the move, scaled by the feedrate multiplier
198
198
const feedRate_t scaled_fr_mm_s = MMS_SCALED (feedrate_mm_s);
199
199
200
- // Get the nominal segment length based on settings
201
- const float nominal_segment_mm = (
200
+ // Get the ideal segment length for the move based on settings
201
+ const float ideal_segment_mm = (
202
202
#if ARC_SEGMENTS_PER_SEC // Length based on segments per second and feedrate
203
203
constrain (scaled_fr_mm_s * RECIPROCAL (ARC_SEGMENTS_PER_SEC), MIN_ARC_SEGMENT_MM, MAX_ARC_SEGMENT_MM)
204
204
#else
205
205
MAX_ARC_SEGMENT_MM // Length using the maximum segment size
206
206
#endif
207
207
);
208
208
209
- // Number of whole segments based on the nominal segment length
210
- const float nominal_segments = _MAX (FLOOR (flat_mm / nominal_segment_mm), min_segments);
209
+ // Number of whole segments based on the ideal segment length
210
+ const float nominal_segments = _MAX (FLOOR (flat_mm / ideal_segment_mm), min_segments),
211
+ nominal_segment_mm = flat_mm / nominal_segments;
211
212
212
- // A new segment length based on the required minimum
213
- const float segment_mm = constrain (flat_mm / nominal_segments, MIN_ARC_SEGMENT_MM, MAX_ARC_SEGMENT_MM);
213
+ // The number of whole segments in the arc, with best attempt to honor MIN_ARC_SEGMENT_MM and MAX_ARC_SEGMENT_MM
214
+ const uint16_t segments = nominal_segment_mm > (MAX_ARC_SEGMENT_MM) ? CEIL (flat_mm / (MAX_ARC_SEGMENT_MM)) :
215
+ nominal_segment_mm < (MIN_ARC_SEGMENT_MM) ? _MAX (1 , FLOOR (flat_mm / (MIN_ARC_SEGMENT_MM))) :
216
+ nominal_segments;
214
217
215
- // The number of whole segments in the arc, ignoring the remainder
216
- uint16_t segments = FLOOR (flat_mm / segment_mm);
217
-
218
- // Are the segments now too few to reach the destination?
219
- const float segmented_length = segment_mm * segments;
220
- const bool tooshort = segmented_length < flat_mm - 0 .0001f ;
221
- const float proportion = tooshort ? segmented_length / flat_mm : 1 .0f ;
218
+ #if ENABLED(SCARA_FEEDRATE_SCALING)
219
+ const float inv_duration = (scaled_fr_mm_s / flat_mm) * segments;
220
+ #endif
222
221
223
222
/* *
224
223
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
@@ -246,108 +245,106 @@ void plan_arc(
246
245
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
247
246
* This is important when there are successive arc motions.
248
247
*/
249
- // Vector rotation matrix values
250
- xyze_pos_t raw;
251
- const float theta_per_segment = proportion * angular_travel / segments,
252
- sq_theta_per_segment = sq (theta_per_segment),
253
- sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6 ,
254
- cos_T = 1 - 0 .5f * sq_theta_per_segment; // Small angle approximation
255
-
256
- #if DISABLED(AUTO_BED_LEVELING_UBL)
257
- ARC_LIJKUVW_CODE (
258
- const float per_segment_L = proportion * travel_L / segments,
259
- const float per_segment_I = proportion * travel_I / segments,
260
- const float per_segment_J = proportion * travel_J / segments,
261
- const float per_segment_K = proportion * travel_K / segments,
262
- const float per_segment_U = proportion * travel_U / segments,
263
- const float per_segment_V = proportion * travel_V / segments,
264
- const float per_segment_W = proportion * travel_W / segments
265
- );
266
- #endif
267
248
268
- CODE_ITEM_E (const float extruder_per_segment = proportion * travel_E / segments);
269
-
270
- // For shortened segments, run all but the remainder in the loop
271
- if (tooshort) segments++;
249
+ xyze_pos_t raw;
272
250
273
- // Initialize all linear axes and E
274
- ARC_LIJKUVWE_CODE (
275
- raw[axis_l] = current_position[axis_l],
276
- raw.i = current_position.i ,
277
- raw.j = current_position.j ,
278
- raw.k = current_position.k ,
279
- raw.u = current_position.u ,
280
- raw.v = current_position.v ,
281
- raw.w = current_position.w ,
282
- raw.e = current_position.e
283
- );
251
+ // do not calculate rotation parameters for trivial single-segment arcs
252
+ if (segments > 1 ) {
253
+ // Vector rotation matrix values
254
+ const float theta_per_segment = angular_travel / segments,
255
+ sq_theta_per_segment = sq (theta_per_segment),
256
+ sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6 ,
257
+ cos_T = 1 - 0 .5f * sq_theta_per_segment; // Small angle approximation
258
+
259
+ #if DISABLED(AUTO_BED_LEVELING_UBL)
260
+ ARC_LIJKUVW_CODE (
261
+ const float per_segment_L = travel_L / segments,
262
+ const float per_segment_I = travel_I / segments,
263
+ const float per_segment_J = travel_J / segments,
264
+ const float per_segment_K = travel_K / segments,
265
+ const float per_segment_U = travel_U / segments,
266
+ const float per_segment_V = travel_V / segments,
267
+ const float per_segment_W = travel_W / segments
268
+ );
269
+ #endif
284
270
285
- #if ENABLED(SCARA_FEEDRATE_SCALING)
286
- const float inv_duration = scaled_fr_mm_s / segment_mm;
287
- #endif
271
+ CODE_ITEM_E (const float extruder_per_segment = travel_E / segments);
288
272
289
- millis_t next_idle_ms = millis () + 200UL ;
273
+ // Initialize all linear axes and E
274
+ ARC_LIJKUVWE_CODE (
275
+ raw[axis_l] = current_position[axis_l],
276
+ raw.i = current_position.i ,
277
+ raw.j = current_position.j ,
278
+ raw.k = current_position.k ,
279
+ raw.u = current_position.u ,
280
+ raw.v = current_position.v ,
281
+ raw.w = current_position.w ,
282
+ raw.e = current_position.e
283
+ );
290
284
291
- #if N_ARC_CORRECTION > 1
292
- int8_t arc_recalc_count = N_ARC_CORRECTION;
293
- #endif
285
+ millis_t next_idle_ms = millis () + 200UL ;
294
286
295
- for (uint16_t i = 1 ; i < segments; i++) { // Iterate (segments-1) times
287
+ #if N_ARC_CORRECTION > 1
288
+ int8_t arc_recalc_count = N_ARC_CORRECTION;
289
+ #endif
296
290
297
- thermalManager.manage_heater ();
298
- const millis_t ms = millis ();
299
- if (ELAPSED (ms, next_idle_ms)) {
300
- next_idle_ms = ms + 200UL ;
301
- idle ();
302
- }
291
+ for (uint16_t i = 1 ; i < segments; i++) { // Iterate (segments-1) times
303
292
304
- #if N_ARC_CORRECTION > 1
305
- if (--arc_recalc_count) {
306
- // Apply vector rotation matrix to previous rvec.a / 1
307
- const float r_new_Y = rvec.a * sin_T + rvec.b * cos_T;
308
- rvec.a = rvec.a * cos_T - rvec.b * sin_T;
309
- rvec.b = r_new_Y;
293
+ thermalManager.manage_heater ();
294
+ const millis_t ms = millis ();
295
+ if (ELAPSED (ms, next_idle_ms)) {
296
+ next_idle_ms = ms + 200UL ;
297
+ idle ();
310
298
}
311
- else
312
- #endif
313
- {
299
+
314
300
#if N_ARC_CORRECTION > 1
315
- arc_recalc_count = N_ARC_CORRECTION;
301
+ if (--arc_recalc_count) {
302
+ // Apply vector rotation matrix to previous rvec.a / 1
303
+ const float r_new_Y = rvec.a * sin_T + rvec.b * cos_T;
304
+ rvec.a = rvec.a * cos_T - rvec.b * sin_T;
305
+ rvec.b = r_new_Y;
306
+ }
307
+ else
316
308
#endif
309
+ {
310
+ #if N_ARC_CORRECTION > 1
311
+ arc_recalc_count = N_ARC_CORRECTION;
312
+ #endif
313
+
314
+ // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
315
+ // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
316
+ // To reduce stuttering, the sin and cos could be computed at different times.
317
+ // For now, compute both at the same time.
318
+ const float cos_Ti = cos (i * theta_per_segment), sin_Ti = sin (i * theta_per_segment);
319
+ rvec.a = -offset[0 ] * cos_Ti + offset[1 ] * sin_Ti;
320
+ rvec.b = -offset[0 ] * sin_Ti - offset[1 ] * cos_Ti;
321
+ }
317
322
318
- // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
319
- // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
320
- // To reduce stuttering, the sin and cos could be computed at different times.
321
- // For now, compute both at the same time.
322
- const float cos_Ti = cos (i * theta_per_segment), sin_Ti = sin (i * theta_per_segment);
323
- rvec.a = -offset[0 ] * cos_Ti + offset[1 ] * sin_Ti;
324
- rvec.b = -offset[0 ] * sin_Ti - offset[1 ] * cos_Ti;
325
- }
326
-
327
- // Update raw location
328
- raw[axis_p] = center_P + rvec.a ;
329
- raw[axis_q] = center_Q + rvec.b ;
330
- ARC_LIJKUVWE_CODE (
331
- #if ENABLED(AUTO_BED_LEVELING_UBL)
332
- raw[axis_l] = start_L,
333
- raw.i = start_I, raw.j = start_J, raw.k = start_K,
334
- raw.u = start_U, raw.v = start_V, raw.w = start_V
335
- #else
336
- raw[axis_l] += per_segment_L,
337
- raw.i += per_segment_I, raw.j += per_segment_J, raw.k += per_segment_K,
338
- raw.u += per_segment_U, raw.v += per_segment_V, raw.w += per_segment_W
339
- #endif
340
- , raw.e += extruder_per_segment
341
- );
323
+ // Update raw location
324
+ raw[axis_p] = center_P + rvec.a ;
325
+ raw[axis_q] = center_Q + rvec.b ;
326
+ ARC_LIJKUVWE_CODE (
327
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
328
+ raw[axis_l] = start_L,
329
+ raw.i = start_I, raw.j = start_J, raw.k = start_K,
330
+ raw.u = start_U, raw.v = start_V, raw.w = start_V
331
+ #else
332
+ raw[axis_l] += per_segment_L,
333
+ raw.i += per_segment_I, raw.j += per_segment_J, raw.k += per_segment_K,
334
+ raw.u += per_segment_U, raw.v += per_segment_V, raw.w += per_segment_W
335
+ #endif
336
+ , raw.e += extruder_per_segment
337
+ );
342
338
343
- apply_motion_limits (raw);
339
+ apply_motion_limits (raw);
344
340
345
- #if HAS_LEVELING && !PLANNER_LEVELING
346
- planner.apply_leveling (raw);
347
- #endif
341
+ #if HAS_LEVELING && !PLANNER_LEVELING
342
+ planner.apply_leveling (raw);
343
+ #endif
348
344
349
- if (!planner.buffer_line (raw, scaled_fr_mm_s, active_extruder, 0 OPTARG (SCARA_FEEDRATE_SCALING, inv_duration)))
350
- break ;
345
+ if (!planner.buffer_line (raw, scaled_fr_mm_s, active_extruder, 0 OPTARG (SCARA_FEEDRATE_SCALING, inv_duration)))
346
+ break ;
347
+ }
351
348
}
352
349
353
350
// Ensure last segment arrives at target location.
0 commit comments