Skip to content

📚 Split Q + QK Fine-grained Tiling

Compare
Choose a tag to compare
@DefTruth DefTruth released this 23 Dec 02:41
· 82 commits to main since this release
d474791

What's Changed

  • [FA2] split-q + tiling-qk D=512 performance🎉 by @DefTruth in #177

📚 Split Q + QK Fine-grained Tiling (O(16xd) SRAM vs FA2 O(4xBrxd) SRAM, Headdim -> 1024)

Currently, for small-scale attention (B<=4, H <=48, SeqLen <= 8192) can run faster than offical FA2/SDPA on some Devices. For example, on NVIDIA RTX 3080 Laptop, 📚 Split Q + Fully Shared QKV SMEM can achieve 55 TFLOPS (D=64) that almost ~1.5x 🎉 faster than FA2. Moreover, on NVIDIA L20, 📚 Split Q + QK Fine-grained Tiling can achieve 81 TFLOPS (D=512) that almost ~1.4x 🎉 faster than SDPA(EFFICIENT_ATTENTION). However, for large-scale attention, there remains a performance gap. Performance is continuously being optimized. Stay tuned for updates ~

  • Example: B=1, H=8, N=8192, D=64 (NVIDIA RTX 3080 Laptop), Faster than FA2~🎉🎉
python3 flash_attn_mma.py --B 1 --H 8 --D 64 --N 8192 --iters 10 --torch # NVIDIA RTX 3080 Laptop
-------------------------------------------B=1, H=8, N=8192, D=64, Warmup: 1, Iters: 10-------------------------------------------
                  torch(unfused): ['-0.00514603 ', '0.05783081  ', '-0.00026727 '], time:20.999861ms, TFLOPS:6.67 (+0.00%)
            mma(split-kv+stage1): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:5.120730ms, TFLOPS:27.36 (+310.10%)
            mma(split-kv+stage2): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:5.004287ms, TFLOPS:28.00 (+2.33%)
             mma(split-q+stage1): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:3.462291ms, TFLOPS:40.47 (+44.54%)
             mma(split-q+stage2): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:3.658915ms, TFLOPS:38.30
   mma(split-q+share-qkv+stage1): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:2.551699ms, TFLOPS:54.91 (+35.69%)
   mma(split-q+share-qkv+stage2): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:2.532172ms, TFLOPS:55.34 (+0.77%)
    mma(split-q+share-kv+stage1): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:2.776575ms, TFLOPS:50.46
    mma(split-q+share-kv+stage2): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:2.596927ms, TFLOPS:53.96
                         (flash): ['-0.00516129 ', '0.05783081  ', '-0.00027728 '], time:3.776550ms, TFLOPS:37.10
----------------------------------------------------------------------------------------------------------------------------------
  • Example: B=1, H=48, N=8192, D=512 (RTX 3080), FA2 not supported, QK Tiling Faster than SDPA~🎉🎉
python3 flash_attn_mma.py --B 1 --H 8 --N 8192 --iters 10 --show-all --sdpa --D 512 # NVIDIA RTX 3080 Laptop, Faster than SDPA
------------------------------------------B=1, H=8, N=8192, D=512, Warmup: 1, Iters: 10-------------------------------------------
   mma(split-q+tiling-qk+stage1): ['-0.00433731 ', '0.02165222  ', '-0.01544189 '], time:48.775554ms, TFLOPS:22.60 (+0.00%)
   mma(split-q+tiling-qk+stage2): ['-0.00433731 ', '0.02165222  ', '-0.01544189 '], time:47.503424ms, TFLOPS:23.20 (+2.68%)
                          (sdpa): ['-0.00438309 ', '0.02174377  ', '-0.01551056 '], time:66.486573ms, TFLOPS:16.58
----------------------------------------------------------------------------------------------------------------------------------
  • Example: B=1, H=48, N=8192, D=512 (NVIDIA L20), FA2 not supported, QK Tiling Faster than SDPA~🎉🎉
python3 flash_attn_mma.py --B 1 --H 48 --D 512 --N 16384 --show-all --check --iters 10 --sdpa
-----------------------------------------B=1, H=48, N=16384, D=512, Warmup: 1, Iters: 10------------------------------------------
   mma(split-q+tiling-qk+stage1): ['0.0079422   ', '-0.02334595 ', '0.00881958  '], time:387.384224ms, TFLOPS:68.28 (+0.00%)
   mma(split-q+tiling-qk+stage2): ['0.0079422   ', '-0.02334595 ', '0.00881958  '], time:325.593209ms, TFLOPS:81.24 (+18.98%)
                          (sdpa): ['0.00790405  ', '-0.02330017 ', '0.00875854  '], time:452.067018ms, TFLOPS:58.51
----------------------------------------------------------------------------------------------------------------------------------
  • 📚 Split Q + Fully Shared QKV SMEM (1/4 SRAM vs FA2)
// Q, K, V fully shared the same shared memory and prefetch Q s2r, improve block occupancy
// and reduce Q SMEM IO-Access.
__global__ void // Q, K, V, O -> [B, H, N, D]
flash_attn_mma_stages_split_q_shared_qkv_kernel(half* Q, half* K, half* V, half* O, ...);
  • 📚 Split Q + QK Fine-grained Tiling (O(16xd) SRAM vs FA2 O(4xBrxd) SRAM, Headdim -> 1024)
// Fine-grained tiling at the MMA level for Q and K results in a constant SRAM usage of
// 64 * kMmaAtomK for Q and K. For V, the SRAM complexity is O(kMmaAtomK * d), leading to
// an overall SRAM complexity of O(kMmaAtomK * d). Consequently, this approach allows us to
// extend D (head dimension) up to 1024. Performance is stay tuned for updates ~
__global__ void // Q, K, V, O -> [B, H, N, D]
flash_attn_mma_stages_split_q_tiling_qk_kernel(half* Q, half* K, half* V, half* O, ...);

Full Changelog: v2.6.10...v2.6.11